時間:2023-01-07 23:55:58
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇光纖通信技術論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
為了適應網絡發展和傳輸流量提高的需求,傳輸系統供應商都在技術開發上不懈努力。富士通公司在150km、1.3μm零色散光纖上進行了55x20Gbit/s傳輸的研究,實現了1.1Tbit/s的傳輸。NEC公司進行了132x20Gbit/s、120km傳輸的研究,實現了2.64Thit/s的傳輸。NTT公司實現了3Thit/s的傳輸。目前,以日本為代表的發達國家,在光纖傳輸方面實現了10.96Thit/s(274xGbit/s)的實驗系統,對超長距離的傳輸已達到4000km無電中繼的技術水平。在光網絡方面,光網技術合作計劃(ONTC)、多波長光網絡(MONET)、泛歐光子傳送重疊網(PHOTON)、泛歐光網絡(OPEN)、光通信網管理(MOON)、光城域通信網(MTON)、波長捷變光傳送和接入網(WOTAN)等一系列研究項目的相繼啟動、實施與完成,為下一代寬帶信息網絡,尤其為承載未來IP業務的下一代光通信網絡奠定了良好的基礎。
(一)復用技術
光傳輸系統中,要提高光纖帶寬的利用率,必須依靠多信道系統。常用的復用方式有:時分復用(TDM)、波分復用(WDM)、頻分復用(FDM)、空分復用(SDM)和碼分復用(CDM)。目前的光通信領域中,WDM技術比較成熟,它能幾十倍上百倍地提高傳輸容量。
(二)寬帶放大器技術
摻餌光纖放大器(EDFA)是WDM技術實用化的關鍵,它具有對偏振不敏感、無串擾、噪聲接近量子噪聲極限等優點。但是普通的EDFA放大帶寬較窄,約有35nm(1530~1565nm),這就限制了能容納的波長信道數。進一步提高傳輸容量、增大光放大器帶寬的方法有:(1)摻餌氟化物光纖放大器(EDFFA),它可實現75nm的放大帶寬;(2)碲化物光纖放大器,它可實現76nm的放大帶寬;(3)控制摻餌光纖放大器與普通的EDFA組合起來,可放大帶寬約80nm;(4)拉曼光纖放大器(RFA),它可在任何波長處提供增益,將拉曼放大器與EDFA結合起來,可放大帶寬大于100nm。
(三)色散補償技術
對高速信道來說,在1550nm波段約18ps(mmokm)的色散將導致脈沖展寬而引起誤碼,限制高速信號長距離傳輸。對采用常規光纖的10Gbit/s系統來說,色散限制僅僅為50km。因此,長距離傳輸中必須采用色散補償技術。
(四)孤子WDM傳輸技術
超大容量傳輸系統中,色散是限制傳輸距離和容量的一個主要因素。在高速光纖通信系統中,使用孤子傳輸技術的好處是可以利用光纖本身的非線性來平衡光纖的色散,因而可以顯著增加無中繼傳輸距離。孤子還有抗干擾能力強、能抑制極化模色散等優點。色散管理和孤子技術的結合,凸出了以往孤子只在長距離傳輸上具有的優勢,繼而向高速、寬帶、長距離方向發展。
(五)光纖接入技術
隨著通信業務量的增加,業務種類更加豐富。人們不僅需要語音業務,而且高速數據、高保真音樂、互動視頻等多媒體業務也已得到用戶青睞。這些業務不僅要有寬帶的主干傳輸網絡,用戶接人部分更是關鍵。傳統的接入方式已經滿足不了需求,只有帶寬能力強的光纖接人才能將瓶頸打開,核心網和城域網的容量潛力才能真正發揮出來。光纖接入中極有優勢的PON技術早就出現了,它可與多種技術相結合,例如ATM、SDH、以太網等,分別產生APON、GPON和EPON。由于ATM技術受到IP技術的挑戰等問題,APON發展基本上停滯不前,甚至走下坡路。但有報道指出由于ATM交換在美國廣泛應用,APON將用于實現FITH方案。GPON對電路交換性的業務支持最有優勢,又可充分利用現有的SDH,但是技術比較復雜,成本偏高。EPON繼承了以太網的優勢,成本相對較低,但對TDM類業務的支持難度相對較大。所謂EPON就是把全部數據裝在以太網幀內傳送的網絡技術?,F今95%的局域網都使用以太網,所以選擇以太網技術應用于對IP數據最佳的接入網是很合乎邏輯的,并且原有的以太網只限于局域網,而且MAC技術是點對點的連接,在和光傳輸技術相結合后的EPON不再只限于局域網,還可擴展到城域網,甚至廣域網,EPON眾多的MAC技術是點對多點的連接。另外光纖到戶也采用EPON技術。
二、光纖通信技術的發展趨勢
對光纖通信而言,超高速度、超大容量、超長距離一直都是人們追求的目標,光纖到戶和全光網絡也是人們追求的夢想。
(一)光纖到戶
現在移動通信發展速度驚人,因其帶寬有限,終端體積不可能太大,顯示屏幕受限等因素,人們依然追求陸能相對占優的固定終端,希望實現光纖到戶。光纖到戶的魅力在于它有極大的帶寬,它是解決從互聯網主干網到用戶桌面的“最后一公里”瓶頸現象的最佳方案。隨著技術的更新換代,光纖到戶的成本大大降低,不久可降到與DSL和HFC網相當,這使FITH的實用化成為可能。據報道,1997年日本NTT公司就開始發展FTTH,2000年后由于成本降低而使用戶數量大增。美國在2002年前后的12個月中,FTTH的安裝數量增加了200%以上。在我國,光纖到戶也是勢在必行,光纖到戶的實驗網已在武漢、成都等市開展,預計2012年前后,我國從沿海到內地將興起光纖到戶建設??梢哉f光纖到戶是光纖通信的一個亮點,伴隨著相應技術的成熟與實用化,成本降低到能承受的水平時,FTTH的大趨勢是不可阻擋的。
(二)全光網絡
傳統的光網絡實現了節點間的全光化,但在網絡結點處仍用電器件,限制了目前通信網干線總容量的提高,因此真正的全光網絡成為非常重要的課題。全光網絡以光節點代替電節點,節點之間也是全光化,信息始終以光的形式進行傳輸與交換,交換機對用戶信息的處理不再按比特進行,而是根據其波長來決定路由。全光網絡具有良好的透明性、開放性、兼容性、可靠性、可擴展性,并能提供巨大的帶寬、超大容量、極高的處理速度、較低的誤碼率,網絡結構簡單,組網非常靈活,可以隨時增加新節點而不必安裝信號的交換和處理設備。當然全光網絡的發展并不可能獨立于眾多通信技術,它必須要與因特網、ATM網、移動通信網等相融合。目前全光網絡的發展仍處于初期階段,但已顯示出良好的發展前景。從發展趨勢上看,形成一個真正的、以WDM技術與光交換技術為主的光網絡層,建立純粹的全光網絡,消除電光瓶頸已成未來光通信發展的必然趨勢,更是未來信息網絡的核心,也是通信技術發展的最高級別,更是理想級別。
三、結語
隨著科學技術的日新月異,互聯網的大數據、云計算、平臺、移動互聯網將人類帶入了高速的信息時代,互聯網和通信方式改變著人們的生活、工作方式,通信方式發生了質的飛躍。同時,人們對通信系統的傳輸性能,也提出了更高的要求。通信方式從電纜通信、微波通信、光纖通信,再到目前的研究熱點高速光纖通信。光纖通信是三大支柱通信方式的主體。光纖通信系統,顧名思義,是利用光作為載波、以光纖作為傳輸媒介進行傳輸信息的通信系統,光纖實際上是一種極細的光導纖維,由純度很高的玻璃拉制而成。普通光纖通信的傳輸速率一般是10Gb/s,高速光纖通信的傳輸速率可達到40Gb/s、160Gb/s甚至更高。事實上,在光纖通信的不同發展階段,高速的含義是不同的。目前通常把STM-16等級以上的系統稱為高速光纖通信系統,也有人稱之為超高速光纖通信系統。光纖通信作為當前三大通信方式的主體,有著較為明顯的優勢:光纖通信的頻帶較寬,可用帶寬約50000GHz,容量大可同時傳輸更多的路數;光纖通信比任何的傳輸都具有更小的損耗,損耗小帶來的直接好處就是中繼距離長,傳輸穩定可靠;另外抗電磁干擾性強、保密性好。
2高速光纖通信系統面臨的挑戰
高速光纖通信系統快速發展,并得到廣泛應用的同時,也存在著一些問題。比如光信噪比(OSNR),OSNR是光纖信號與噪聲的比值,OSNR的大小直接影響傳輸信號質量的優劣,OSNR過大,傳輸距離會相應減小。另外,色散、非線性效應等問題也是影響高速光纖通信傳輸的主要因素。色散會使脈沖展寬、強度降低,增大誤碼率,信號畸變失真,直接降低通信質量。色散一般分為兩類:群速度色散和偏振模色散(PMD)。群速度色散和偏振模色散效應對系統的傳輸性能、傳輸速率和傳輸距離都會有明顯的損害。PMD的問題在以往的光纖傳輸中就存在,傳輸速率越高,PMD的影響也越加明顯。光纖傳輸的衰減、消耗和色散與光纖長度為線性關系,光纖的帶寬與光纖長度為非線性關系,這一非線性關系即為非線性效應。非線性效應分為散射效應、與折射密切相關的自相位調制SPM、交叉相位調制XPM和四波混頻效應FWM,其中XPM和FWM對系統影響較為嚴重。因此,研究OSNR、色散和非線性效應問題是解決高速光纖通信系統高質量傳輸的關鍵技術。
3高速光纖通信系統的關鍵技術
1.1損耗低,傳輸距離遠
與普通的通信相比,光纖的損耗率要低得多。目前,光纖的損耗可以低達0.2dB/km。中繼光放大器間距可達100多km,而傳統的銅電纜中繼放大器間距僅為幾百米到幾千米。因此,除了用戶到小站間仍使用銅電纜,其他通信網中包括電視網、跨海洋的網絡全部使用光纖通信。光纖通信在長距離傳輸中的優勢非常明顯。目前光纖通信的最長通信距離達到10000m以上。
1.2抗干擾能力強
與其他光纜相比,光纖通信具有非常明顯的優點———抗電磁干擾能力極強。光纖通信設備的主要成分是SiO的應用給光纖通信技術帶來無可比擬的優勢。由于石英具有極強的抗腐蝕性和絕緣性,因此,應用到光纖通訊設備上使其同樣具有較強的抗干擾能力。光纖通信不會受到太陽黑子活動、電離層變化、雷電以及人為釋放的電磁等方面的干擾,這一特性使得光纖可以應用到軍事領域中。
1.3安全性和保密性高
因為光纖主要依靠光波的全反射原理進行傳輸,光信號完全被限制在包層內,光波泄露的現象很少發生。而且一個光纜內的很多光纖線之間也不會相互干擾,因此,光通信的抗干擾能力很強,保密性和安全性非常高。此外,光纖的重量很輕、體積較小,這樣既節省空間又使得設備的安裝非常方便。另外,用來制作光纖通信設備的原材料越來越豐富,而且價格低廉,穩定性好,同時受環境溫度影響小,使用壽命很長。光纖通信技術這些優勢使其在日常生活中的應用范圍和領域越來越廣。
2光纖通信技術在我國的發展現狀
2.1普通單模光纖的現狀
光纖分為單模光纖和多模光纖兩大類。目前,普通單模光纖是我們生活中最常見的光纖。單模光纖只能傳輸一種模式的光,且對光源的譜寬及穩定性都有較高的要求。隨著光纖通信技術的發展,單模光纖的傳輸距離和信息容量也在不斷增加,G652.A光纖的性能還能進一步優化和提高。符合ITUTG654規定的截止波長的單模光纖和符合G653規定的單模光纖是對G652.A光纖進行了改進。
2.2接入網光纜的發展現狀
光纖接入網指的是以光纖為主要媒質實現接入網的信息傳送。光纖接入逐漸替代原有電纜,成為通信接入網未來重點的發展方向。接入網光纜的發展趨勢主要體現在接入網的光纜距離不斷縮短、分支越來越多、分插頻繁等。通常情況下,接入網的光纜會采用增加光纖芯數的方式來增加網絡容量。尤其是城市的光纖管道,由于管道內徑有限制,只能通過增加管內光纖芯數和光纖的集裝密度來增加網絡容量,同時需要減輕光纜的重量,縮小光纜的直徑。通常,接入網光纖使用G652普通單模光纖或G652C低水峰的單模光纖,而前者在我國使用較多。
2.3室內光纜的發展現狀
室內光纜指的是光傳輸載體(光纖)經過一定技術手段處理而形成的線纜,通常需要同時支持語音、數據以及視頻等信號傳輸。室內光纜主要包括綜合布線與局內光纜兩大部分。其中綜合布線的光纜一般供用戶使用,放置在室內用戶端,而局內光纜放在中心局或其他各類電信機房內。室內光纜結構的設計和應用容易受到建筑物本身的限制及光纜材料多樣化的影響,因此室內光纜相對復雜。雖然其抗拉度較小,保護層也較差,但是室內光纜仍然有經濟、便捷、便于信息傳遞等自身優勢。室內光纜傳輸信息速度很快,而且具有信號穩定、清晰、強烈,抗干擾性好,信息流量大等優點。
2.4通信光纜的發展現狀
通信光纜主要包括多根光纖芯和包層組成的纜芯、外保護層,屬于全介質光纜,是電力系統中最為理想的通信線路。通信光纜主要依靠電流傳輸信號,在數據信息傳輸方面具有一定優勢,但是其傳輸信息量較小。ADSS光纜則因為其可以單獨布放,比較適用于電力通信領域。目前我國電力系統改造過程中廣泛應用ADSS光纜,但是我國通信光纜的產品結構和性能仍然需要進一步完善。
2.5塑料光纖的發展
塑料光纖在我國也得到了廣泛應用,其成本低廉、傳輸速度較快,是優質的短距離信息傳輸介質。它主要利用光的全反射或者光在塑料纖維內的跳躍來進行傳輸,因此在數據傳輸系統領域有巨大的潛在市場。塑料光纖可以應用于海底。在海底進行鋪設時,海底光纖使用絕緣材料包裹導線,同時其兩端采用激光器,大大節約成本,相應的通話費用也有一定的減少。
3我國光纖通信技術在未來的發展趨勢
3.1超大的容量,超長的距離
超大容量、超長距離的傳輸技術在我國通信技術領域將有廣闊的應用前景。波分復用技術(WDM)通過增加單根光纖中傳輸的信道數,大大提高光纖傳輸系統的傳輸容量。目前1.6Tbit/s的光波分復用系統已經大量商用,同時全光傳輸的距離也在逐漸增加。而光時分復用技術(OTDM)通過提高單信道速率來提高傳輸容量,使目前單信道最高速率達到640Gbit/s。要想進一步提高光纖通信的傳輸速度和傳輸容量,僅僅依靠光波分復用技術或光時分復用技術是很難實現的,必須同時結合光時分復用和光波分復用技術,只有這樣才能進一步提高光纖的傳輸速度和容量。
3.2光網絡智能化
智能化的光網絡是我國光纖通信技術未來非常重要的發展方向。近50年的發展歷程中,信息傳輸一直占據著光纖通信技術的主導地位。隨著計算機技術的迅猛發展,網絡技術和通信技術實現完美結合,進一步促進光網絡通信技術朝著更高更好的方向發展?,F代化的光網絡不僅能實現信息數據的傳輸,同時結合計算機控制技術、自動發現功能及更加完善的自我保護修復能力,真正形成智能化的光網絡。
3.3擺脫電處理過程,實現全光網絡
1.1SDH光纖通信在鐵路通信系統中的應用
SDH光纖通信在鐵路通信系統里的使用解決了PDH光纖通信使用存在的問題,并在此基礎上有所突破,讓鐵路通信系統更加穩定和流暢。借助SDH設備構成的具備自愈保護作用的環網形式,能在傳輸媒體主要信號中斷的時候自動利用自愈網及時恢復正常的通信狀態。相較于與PDH技術,SDH技術有四個顯著優點:一是網絡管理能力更強;二是比特率和接口標準均統一,讓各個廠家設備間的互聯成為了可能;三是提出“自愈網”這一新理論,能在傳輸媒體主要信號中斷時及時恢復正常;四是運用字節復接技術,簡化網絡各個支路信號。鑒于SDH光纖通信技術有諸多優點,所以在鐵路通信網發展規劃里,已經明確提出了要著重發展基于同步數字系列(SDH)基礎上的傳送網[2]。就以xx鐵路為例,該鐵路基于新敷設20芯光纜里的其中4芯光纖基礎上,開設SDH2.5Gb/s(1+1)光同步傳輸系統為長途傳輸網,在鐵路的相應經過點均設置了SDH2.5Gb/sADM設備,并借助622Mb/s光口同接入層傳輸設備相連,發揮上聯和保護作用。此外,還借助2芯光纖開設了SDH622Mb/s(1+0)光同步傳輸系統,將其作為當地的中繼網,并在鐵路相應經過點以及新開設的各個中間站和線路新設置了SDH622Mb/s設備。
1.2DWDM光纖通信在鐵路通信系統中的應用
DWDM光纖通信技術是借助單模光纖寬帶與損耗低的特點,由多個波長構成載波,許可各個載波信道能同時在同一條光纖里傳輸,如此一來,在給定信息傳輸容量的情況西夏,就能降低所需光纖的總量。使用DWDM技術,單根光纖能傳輸的最大數據流量可以高達400Gb/s。DWDM技術最顯著的優點就是其協議與傳輸速度是沒有關聯的,以DWDM技術為基礎的網絡可以使用IP協議、以太網協議、ATM等進行數據傳輸,每秒處理數據流量在100Mb~2.5Gb之間。也就是說,以DWDM技術為基礎的網絡能在同一個激光信道上以各種傳輸速度傳輸各種類型的數據流量。當前,在國內鐵路通信網里DWDM技術得到了廣泛應用,其中滬杭-浙贛鐵路干線就是國內第一條使用DWDM光纖傳輸系統的鐵路。此外,京九、武廣等鐵路的DWDM光纖傳輸系統也在建設與使用中。就拿京九鐵路來說,京九鐵路線使用的是具有開放性的DWDM系統和設備,能兼容各種工作波長以及廠商的SDH設備。波道數量為16,波道速率基礎為每秒2.5Gb,借助京九線20芯光纜里的2芯G.652單模光纖,使用單纖單向傳輸的方式,也就是說相同波長在兩個方向上都能多次使用,光接口滿足ITU-TG.692協議的標準。
2結語
關鍵詞:光纖通信技術特點發展趨勢光纖鏈路現場測試
一、光纖通信技術
光纖通信是利用光作為信息載體、以光纖作為傳輸的通信方式??梢园压饫w通信看成是以光導纖維為傳輸媒介的“有線”光通信。光纖由內芯和包層組成,內芯一般為幾十微米或幾微米,比一根頭發絲還細;外面層稱為包層,包層的作用就是保護光纖。實際上光纖通信系統使用的不是單根的光纖,而是許多光纖聚集在一起的組成的光纜。由于玻璃材料是制作光纖的主要材料,它是電氣絕緣體,因而不需要擔心接地回路;光波在光纖中傳輸,不會發生信息傳播中的信息泄露現象;光纖很細,占用的體積小,這就解決了實施的空間問題。
二、光纖通信技術的特點
2.1頻帶極寬,通信容量大。光纖的傳輸帶寬比銅線或電纜大得多。對于單波長光纖通信系統,由于終端設備的限制往往發揮不出帶寬大的優勢。因此需要技術來增加傳輸的容量,密集波分復用技術就能解決這個問題。
2.2損耗低,中繼距離長。目前,商品石英光纖和其它傳輸介質相比的損耗是最低的;如果將來使用非石英極低損耗傳輸介質,理論上傳輸的損耗還可以降到更低的水平。這就表明通過光纖通信系統可以減少系統的施工成本,帶來更好的經濟效益。
2.3抗電磁干擾能力強。石英有很強的抗腐蝕性,而且絕緣性好。而且它還有一個重要的特性就是抗電磁干擾的能力很強,它不受外部環境的影響,也不受人為架設的電纜等干擾。這一點對于在強電領域的通訊應用特別有用,而且在軍事上也大有用處。
2.4無串音干擾,保密性好。在電波傳輸的過程中,電磁波的傳播容易泄露,保密性差。而光波在光纖中傳播,不會發生串擾的現象,保密性強。除以上特點之外,還有光纖徑細、重量輕、柔軟、易于鋪設;光纖的原材料資源豐富,成本低;溫度穩定性好、壽命長。正是因為光纖的這些優點,光纖的應用范圍越來越廣。
三、不斷發展的光纖通信技術
3.1SDH系統光通信從一開始就是為傳送基于電路交換的信息的,所以客戶信號一般是TDM的連續碼流,如PDH、SDH等。伴隨著科技的進步,特別是計算機網絡技術的發展,傳輸數據也越來越大。分組信號與連續碼流的特點完全不同,它具有不確定性,因此傳送這種信號,是光通信技術需要解決的難題。而且兩種傳送設備也是有很大區別的。
3.2不斷增加的信道容量光通信系統能從PDH發展到SDH,從155Mb/s發展到lOGb/s,近來,4OGB/s已實現商品化。專家們在研究更大容量的,如160Gb/s(單波道)系統已經試驗成功,目前還在為其制定相應的標準。此外,科學家還在研究系統容量更大的通訊技術。
3.3光纖傳輸距離從宏觀上說,光纖的傳輸距離是越遠越好,因此研究光纖的研究人員們,一直在這方面努力。在光纖放大器投入使用后,不斷有對光纖傳輸距離的突破,為增大無再生中繼距離創造了條件。
3.4向城域網發展光傳輸目前正從骨干網向城域網發展,光傳輸逐漸靠近業務節點。而人們通常認為光傳輸作為一種傳輸信息的手段還不適應城域網。作為業務節點,既接近用戶,又能保證信息的安全傳輸,而用戶還希望光傳輸能帶來更多的便利服務。
3.5互聯網發展需求與下一代全光網絡發展趨勢近年來,互聯網業發展迅速,IP業務也隨之火爆。研究表明,隨著IP業的迅速發展,通信業將面臨“洗牌”,并孕育著新技術的出現。隨著軟件控制的進一步開發和發展,現代的光通信正逐步向智能化發展,它能靈活的讓營運者自由的管理光傳輸。而且還會有更多的相關應用應運而生,為人們的使用帶來更多的方便。綜上所述,以高速光傳輸技術、寬帶光接入技術、節點光交換技術、智能光聯網技術為核心,并面向IP互聯網應用的光波技術是目前光纖傳輸的研究熱點,而在以后,科學家還會繼續對這一領域的研究和開發。從未來的應用來看,光網絡將向著服務多元化和資源配置的方向發展,為了滿足客戶的需求,光纖通信的發展不僅要突破距離的限制,更要向智能化邁進。
四、光纖鏈路的現場測試
4.1現場測試的目的對光纖安裝現場測試是光纖鏈路安裝的必須措施,是保證電纜支持網絡協議的重要方式。它的目的在于檢測光纖連接的質量是否符合標準,并且減少故障因素。
4.2現場測試標準目前光纖鏈路現場測試標準分為兩大類:光纖系統標準和應用系統標準。①光纖系統標準:光纖系統標準是獨立于應用的光纖鏈路現場測試標準。對于不同的光纖系統,它的標準也不同。目前大多數的光纖鏈路現場檢測應用的就是這個標準。②光纖應用系統標準:光纖應用系統標準是基于安裝光纖的特定應用的光纖鏈路現場測試標準。這種測試的標準是固定的,不會因為光纖系統的不同而改變。
4.3光纖鏈路現場測試光纖通信應用的是光傳輸,它不會受到磁場等外界因素的干擾,所以對它的測試不同于對普通的銅線電纜的測試。在光纖的測試中,雖然光纖的種類很多,但它們的測試參數都是基本一致的。在光纖鏈路現場測試中,主要是對光纖的光學特性和傳輸特性進行測試。光纖的光學特性和傳輸特性對光纖通信系統對光纖的傳輸質量有重大的影響。但由于光纖的特性不受安裝的影響,因此在安裝時不需測試,而是由生產商在生產時進行測試。
4.4現場測試工具①光源:目前的光源主要有LED(發光二極管)光源和激光光源兩種。②光功率計:光功率計是測量光纖上傳送的信號強度的設備,用于測量絕對光功率或通過一段光纖的光功率相對損耗。在光纖系統中,測量光功率是最基本的。光功率計的原理非常像電子學中的萬用表,只不過萬用表測量的是電子,而光功率計測量的是光。通過測量發射端機或光網絡的絕對功率,一臺光功率計就能夠評價光端設備的性能。用光功率計與穩定光源組合使用,組成光損失測試器,則能夠測量連接損耗、檢驗連續性,并幫助評估光纖鏈路傳輸質量。③光時域反射計:OTDR根據光的后向散射原理制作,利用光在光纖中傳播時產生的后向散射光來獲取衰減的信息,可用于測量光纖衰減、接頭損耗、光纖故障點定位以及了解光纖沿長度的損耗分布情況等。從某種意義上來說,光時域反射計(OTDR)的作用類似于在電纜測試中使用的時域反射計(TDR),只不過TDR測量的是由阻抗引起的信號反射,而OTDR測量的則是由光子的反向散射引起的信號反射。反向散射是對所有光纖都有影響的一種現象,是由于光子在光纖中發生反射所引起的。
雖然目前光通信的容量已經非常大,但仍有大量應用能力閑置,伴隨著社會經濟和科學技術的進一步發展,對信息的需求也會隨之增加,并會超過現在的網絡承載能力,因此我們必須進一步努力研究更加先進的光傳輸手段。因此,在經濟社會發展的推動下,光通信一定會有更加長久的發展。
參考文獻:
[1]王磊,裴麗.光纖通信的發展現狀和未來[J].中國科技信息.2006.(4).
[2]何淑貞,王曉梅.光通信技術的新飛躍[J].網絡電信.2004.(2).
在應用過程中,按照用途將光纖進行分類,可分為傳感光纖和通信用光纖;按照制作工藝分類,可分為材料組成類、制造工藝類和光學特性類;按照傳輸介質分類,可分為專用和通用兩種,并且,功能器件光纖可以應用于放大光波、分頻、整形和光振蕩等方面,從而以不同形態呈現在人們眼前。根據光纖通信的應用情況可知,光纖通信的基本構成結構包括光源、光纖和光檢測器三部分,具有如下幾個特點:
(1)信號干擾小、保密性強。
(2)通信容量超大,可完成遠距離傳輸。一般一根光纖的帶寬在20THz以上,在沒有中繼傳輸的情況下,可傳輸到幾十公里以上。
(3)重量較輕、細徑較細,一般制作材料是石英,大大降低了有色金屬的耗損,使資源得到合理利用。
(4)不受外界因素影響,在任何情況下可使用,具有較長使用壽命。
(5)較強抗電磁干擾能力和絕緣性能,因此,信息傳輸質量非常好。
(6)沒有輻射,不容易被竊聽,提高信息傳輸的安全性。
(7)環繞性好、抗腐蝕能力強,在使用過程中,不會出現火花,減少安全事故。
2光纖通信技術在電力通信中的應用
在電力通信中,電力特種光纖包括OPGW(光纖復合地線)、MASS(金屬自承光纜)、OPPC(光纖復合相線)、ADL(相/地捆綁光纜)、ADSS(全介質自承光纜)和GWWOP(相/地線纏繞光纜)等六種,而我國應用較多的電力特種光纜是ADSS和OPGW兩種,大大提高了電力通信的工作效率,使電能損耗得到大量減少。
2.1ADSS(全介質自承光纜)
根據我國電力通信的發展來看,ADSS(全介質自承光纜)在35KV、110KV、220KV的電壓等級輸電線路上得到了廣泛應用,尤其是目前已建成的線路上使用范圍非常廣,使電力部門利用高壓輸電線桿塔建設通信網絡變得更加方便和快捷,大大減低工作人員的工作量和建設成本。在進行光纜設計時,對溫差、風速和氣候等外界因素進行了充分考慮,因此,ADSS(全介質自承光纜)具有很強的抗震動性、抗沖擊性,可以隨意彎折和抗老化性,并且,成本較低、安裝非常方便、易攜帶,給桿塔帶來的負載非常小。由于ADSS(全介質自承光纜)具有光纖傳輸性能強、環境性能好和光纜機械性能卓越等特點,在實際應用過程中,可以與高雅電力傳輸線架設在同一根電桿上,因此,成為了電力系統中最完美的電網通信傳輸介質,確保了電網通信的信號質量,使光纜傳輸效果得到大大提高。我國現代化建設中,ADSS(全介質自承光纜)在山區、跨度較大區域和雷電集中區等地方的線纜架空敷設中非常適用,在滿足了電力部門自身的通信要求的同時,為通信業務不斷發展和開展新業務提供新的途徑。
2.2OPGW(光纖復合地線)
在電力通信中,OPGW(光纖復合地線)是電路傳輸線路的地形中含有供通信用的光纖單元,由此可見,架空地線中含有光纖,OPGW(光纖復合地線)是架空地線和光纜的復合體。由于OPGW(光纖復合地線)的一次性投入較大,在新建線路或舊線路更換時會選擇使用,具有可靠性高和不需要維護的特點。在實際應用過程中,OPGW(光纖復合地線)擁有兩種功能:一是,與復合在地線中的光纖一起完成信息傳輸,二是作為輸電線路的防雷線,可以對輸電導線起到屏蔽保護的作用。一般情況下,OPGW(光纖復合地線)有鋁管型、鋼管型和鋁骨架型三種,具有光學性能、電氣性能和機械性能,可以應用于具有架空接地線的輸配電線路中,從而使光纖的可靠性和安全性得到大大提高,使我國輸電容量得到機一部提高。在新建線路的應用中,OPGW(光纖復合地線)不需要增加建設成本,在舊線路更換中,只需要將原來的地線更換掉就可以了,并且不需要對桿塔進行加固或重新設計等,從而大大減少工作人員的工作量。另外,OPGW(光纖復合地線)的安裝非常方便,不需要特殊的工具,成為我國電力事業未來發展的重要研究方向。
3結束語
從光纖技術的使用狀況進行分析,光纖通信技術作為激光通信技術的一部分,效率高、便捷、成本低是其基本特點,被各領域廣泛使用。最初的通信行業中,作為電磁波的光就已經得到廣泛運用,這使得通信的技術水準上了一個新的臺階。通常來講,主要有兩種不同的情況通過光進行通信,一是激光大氣,其光源是激光,主要是將信息經過調制光的機器轉變成信號,然后通過光學天線進行發送,接受信息的設備也是匹配的,如此信息就通過激光完成了傳播。此類通信方式受溫度和大氣的制約,傳輸的距離不宜過大,所以,這種通信方式多適用于指定區域內。二是導光纖維,這種纖維通過玻璃拉直后進行信息的傳輸,也就是我們通常所指的光纖通信。
2、電力通信網的構成及特點
微波、光纖以及衛星電路是當前電力通信技術中的主要干線,電力系統特有的光纜和電力線載波等方式是不同支路完成通信的主要載體,并采用明線、電纜、無線等多種通信手段及程控交換機、調度總機等設備組成的多用戶、多功能的綜合通信網。電力通信的主要包括以下幾種方式。
2.1電力線載波通信
對工頻電流的傳輸是電力線路的工作重點。電力線載波完成通信的工作原理是:利用載波機將需要傳輸的信息轉換為高頻的弱電流,然后通過電力線路完成傳輸,其特點是:投資少、可靠性強、收效快,并且可以與電網同步發展建設。另外,此類通信方法還可以通過電力線將底線架空的方式來實現載波信號的傳送,這叫絕緣地線載波法,這種載波方法與傳統方法相比,具有脫離線路故障以及線路停電等因素的制約的優勢,同時,這種絕緣地線還可以在很大程度上起到省電的作用。
2.2光纖通信
由于光纖通信具有抗電磁干擾能力強、傳輸容量大、頻帶寬、傳輸衰耗小等諸多優點,它一問世便首先在電力部門得到應用并迅速發展。除普通光纖外,一些專用特種光纖也在電力通信中大量使用。電力通信不僅包括上面兩種,還包括音頻電纜、曾經的明線電話和當前流行的擴頻通信等。與專供通信的專門網絡不通,電力通信的主要特點是:對靈活性與可靠性提出了更高的要求;種類繁多、信息傳輸量少、強大的實時性;抗沖擊性強;具有更復雜的網絡構造;機房多為無人看守、通信的范圍廣大。
3、光纖通信技術在電力通信中的應用
(1)光纖具有比電纜以及銅線更寬的頻帶面,傳輸的寬帶較大,這對傳輸的信息量和傳輸速度都十分有利。人類的需求在信息技術的推動下日益增加,這也對電力通信的網絡提出了更高的要求,使其面臨的任務更加艱巨。當前電力系統飛速發展、電網實現數字化、信息化建設日趨完善,這對電力系統的信息量傳輸提出了更高的要求。因此,在整個電力通信中,具有較大傳輸量優勢的光纖通信技術起到了關鍵性的作用。
(2)光纖通信技術在信息的傳輸過程中損耗遠遠低于其他材質的傳輸材料,還有光纖可以長距離傳輸,也就是說光纖通信技術可以在脫離中繼站的情況下實現信息的遠距離傳輸,大大的減少了中繼站的建設費用。在國家經濟的推動下,電力通信設計的范圍也越來越廣,常見的事例有:偏遠鄉村日益發展的有線電視,不斷更新的數字電視等,當前中國,電信干線傳輸、電力通信和廣播電視等網絡的覆蓋面積越來越廣,規模越來越大,工程體系越來越繁雜。大規模的使用光纖通信技術,可以降低傳輸損耗、降低中繼站數量,節省建站資金等。
(3)光纖具有抗腐蝕和絕緣的特性,并且在傳輸信號的過程中具有抗干擾、防竊聽、防泄漏信息的優勢,這在很大程度上對電力系統的穩定安全起了保護作用,這對社會運行的正常與否也有決定性的作用。
(4)相對于其他公用網公司,電力系統在通信技術方面有著自己的要求,所以通常電力通信在建設過程中,會根據其特有的要求采用不同類型的光纖進行通信建設。ADSS與OPGW是當前中國特種光纜的類型,這種特種通信光纜主要服務于電力通信。其與眾不同的結構與安裝情況決定了其與其他光纜的不同,這種材料的價格成本比較昂貴,但它具有低損耗、長壽命、較強安全性和與地線復合等優勢,這在很大程度上節省了建設系統網絡的成本,并且使電力通信的質量得到了質的飛越。
4、結語
就目前的網絡發現趨勢來看,網絡的綜合化、集成化、智能化和高可靠性已成為必然的發展趨勢。但是,目前基于電的時分復用方式技術已經到達瓶頸,但是光纖的可用帶寬只利用可利用的不到1%,其潛力是很大的。單就基于光路的波分復用(WDM)來講,目前的商業水平可達到270左右,研究實現的水平1000左右,理論可同時傳播360億路的電話。波分復用的在目前的研究水平上,理論極限大約是15000個波長。國外已有相關人員在一根光纖中傳輸了65536個光波,這充分說明了密集波分復用的無限可能性。我們有充分的理由相信,以后在光路方面的發展,將會使光纖通信技術更上一個臺階。
2光纖通信網絡技術業務趨勢
可以說IP技術改變了我們的生活,其依賴的光纖通信技術更可以實現我們更多的夢想。IP技術的核心是IP尋址,是基于TCP/IP協議,其中最主要的兩個協議是IP協議和TCP協議,這兩個協議保證了信息在網絡中的可靠傳輸。未來的IP業務將承載的不只有文字,更有圖像視頻,構成未來網絡的基礎,實現一種基于光纖的智能化網絡平臺,以滿足人們對網絡的不同程度的需求。以IP技術為主流的數據業務,將會是當今世界信息化的發展方向?,F在幾乎已經把能否有效支持IP業務作為一項技術能否長久的標志。目前IP技術已經相當成熟,要拓展更多的IP業務,無疑需要網絡開發商創造出性價比更高的低廉傳輸成本。光纖通信技術能很好的滿足這方面的要求。因此,光纖網絡技術將會是現代IP業務發展的基礎和方向。
3光纖網絡通信技術發展方向
從30多年前光纖的問世開始,光纖的傳輸速率就在不斷的提高。有統計表明,在過去的10年中,光纖的傳輸速率提高了100倍左右。預計在未來的十年,還將再提高100倍左右。IP技術使得三網融合,包括通信網、有線電視網和計算機網絡,成為可能。這就需要更高速可靠的信息傳播途徑,因此,必須讓傳遞信息的介質能夠支持這些業務。就目前來看,互聯網的通信基本上可以分為三類:人與人,如IP電話;計算機與人,如網頁服務;計算機與計算機,如郵件。這些通信對網絡的要求也不盡相同。因此,建立一個全新透明的全光路網絡就會是此類技術發展的必由之路,我們稱之為光聯網。這不但會使傳統的互聯網業務更加可靠便捷,而且會促進一些無法預料到的新業務產生。不難想到,基于光路的波分復用(WDM)技術,將會是未來光聯網道路上的先驅。光聯網將會將會實現以下幾個基本功能:1)超高速的傳輸速率;2)靈活的網絡重組;3)網絡層的透明性,對下層網絡傳輸機制透明;3)更易的擴展性,允許網絡節點和數據量的不斷增長;4)更快速的網絡恢復速度;5)同時實現光路和應用層的聯網,使其有更健壯的物理層恢復能力。鑒于光聯網的巨大優勢和潛力,目前一些發達國家已經投入了巨大的人力、財力和物力對其進行研究和實施。光聯網將會是電聯網以后又一個互聯網的革命。這不光對我們國民經濟發展有重要意義,而且對國家的信息安全有著重要的戰略意義。我們能夠預測到,在不久的將來,隨著光纖通信網絡技術的迅速發展,人們的通信能夠朝著傳輸速率更高、信號更加穩定的方向發展,人們在各種復雜情況之下的通訊要求也能夠不斷地得以滿足。
4結語
1.1光纖通信系統概述光纖通信系統以光纖為傳輸介質,主要由數據源、光發送端、光學信道、光接收機等。其中,數據源中包括所有數據、語音業務經過信道編碼形成的信號;光發送機將信號變成適合在光學信道上傳輸的光信號,并從中提取信息,轉換成電信號,最后得到相應的語音、數據等信息。如圖2所示為光纖通信系統結構示意圖。1970年,美國康寧公司研發出世界上首根套層光纖,其損耗率為20db/km,它使得光纖通信成為可能。1975年,貝爾實驗室開展世界上第一次光纖點到點的通信試驗。1977年,貝爾實驗室和日本電報電話公司同時研制成功壽命在10年左右的半導體激光器,使得光纖通信步入實用化階段。同年,美國興建起世界首個光纖通信系統,傳輸速率為45MB/s,通信窗口為850nm。經過三四十年的發展,光纖通信有了巨大進步和革新,尤其是在上世紀90年代,光纖通信系統迎來其發展高峰期,大量的技術和設備被研發出來,解決了線路中的電子瓶頸,通信窗口也迅速移到1550nm。到今天,光波分復用技術的發明又為光纖通信系統帶來新的發展面貌。
1.2在光纖通信系統中的應用第一,在接入網中的應用。光纖接入網的接入方式可分為無源接入和有源接入兩種,其中,無源光網絡是一種非常優質的接入方式,具有低成本、光纖少、中心局終端少、雷電影響小、電磁干擾少等優點,后期的運營維護成本也較少,其擴展性強,能隨著技術的發展而升級改造。帶寬大、傳輸距離可達20km。正是由于諸多的優點無源光網絡接入方式成為光纖接入網的首選接入方式,其中,上行接入技術乃技術關鍵點和難點,不能采用以往的以太網CSMA/CD媒體接入控制方式進行上行接入,可以將光波分復用技術應用到其中,進行上行接入?;诠獠ǚ謴陀眉夹g的波分多址上行接入方式以波長為用戶端ONU的標識,實現上行接入,具有較大的帶寬,能充分利用光纖的大帶寬,實現對稱寬帶接入。同時,該種接入方式還能有效解決ONU測距、快速比特同步等困難,在網絡管理和系統升級方面具有顯著優勢。隨著光波分復用技術的發展,光波分復用器材價格越來越低,性能越來越優,這有效推動了無源光網絡的發展。第二,在城域網建設中的應用。傳統電信城域網無法適應數據業務突變性特點,承載多業務的帶寬效率低。因此,當前城域網發展的目標為面向數據和多媒體業務應用的IP優化網絡?;贗P和光波分復用技術建設的城域網成為新型城域網的主要方案,其采用IPoverWDM傳輸技術,就是使IP數據包直接在光路上跑,減少網絡層之間的冗余部分,該方法省去了中間的ATM層和SDH層,傳輸效率高、運行成本低,用戶網絡費用少,非常適合于城域網建設。從通信協議角度來講,該方案的網絡結構層次為IP業務層和光網絡層,光網絡層又可以分成光網絡適配子層、光復用子層、光傳輸子層,其中,光復用子層為核心,它完成光復用協議的相關內容,復用帶寬、保護線路、定位故障點。該方案有效應用了光纖的巨大帶寬資源,提高帶寬和傳輸速率,實現數據格式、調制方式的透明化,實現與現有通信網的兼容,支持網絡升級,具有極高的推廣性和生存性。同時,該方案也有一定缺點,網絡管理與其傳輸的信號和網管分離開來,只是點對點的拓撲結構方式,沒有實現真正意義上的光網絡。在光纖通信系統中,若沒有應用光波分復用技術,則需要多投入n-1根光纖,若光纖通信方式為多個用戶協同工作,則適用光波分復用技術能更好突出光波分復用技術的優勢,實現單根光纖傳輸容量成幾倍乃至幾十倍的增長,更好利用現有的光纖帶寬資源。在遠距離運輸中,適用WDM技術有助于節省大量光纖,降低光纖通信系統的開發建設成本。WDM以波長路由代替傳統電子信號路由,以解復用器代替光電轉換交換器,消除延遲轉發等瓶頸問題,保證傳輸的透明性??偠灾獠ǚ謴陀眉夹g在光纖通信系統中有廣闊的應用空間,能帶來良好的應用效果,值得大力推廣。
1.3光波分復用技術的發展趨勢隨著光波分復用技術的發展和應用,光纖通信朝著高速率、大傳輸容量方向發展,光纖通信對光波分復用技術提出更高要求,進一步推動光波分復用技術的發展。作為一種對米元件依賴性強的技術,未來的WDM技術發展方向是研發出更多新的、性能更好的米元件,開發低價的小型集成光元件,如:放大器、光交叉連接器、光分插復用器、濾波器、信號調節器、光存儲器等。其實現互通性和標準化服務,還必須實現傳輸協議和網關標準的規范化。伴隨著光纖通信系統的發展,以WDM為基礎的光網絡層將逐步實現全光網絡連接,實現用戶與光纖通信網絡的親密接觸,到時候,人們可以利用WDM技術實現可視電視、可視會議、遠程技術等支援,進行語音、數據、圖像等多媒體信息的傳輸、處理和交換。簡單來說,WDM技術的完善將推動廣電數字網絡的發展,用戶對廣電數字網絡的需求又成為WDM發展的巨大推動力。WDM技術第一次實現了電信號到光信號的轉換,它標志著光通信時代的到來。當前的研究重點是密集波分復用技術,其商用水平為320Gbit/s,也就是說,一對光纖可傳送400萬話路,商用系統的傳輸能力僅是單根光纖傳輸容量的百分之一。在光纖網絡中,FTTH解決的是光纖通信“最后一公里”的問題,日本、美國、韓國緊鑼密鼓的建設FTTH網絡,進行大規模建設,將光波分復用就似乎應用其中,發展成為今天的WDM-PON。在我國,FTTH網絡的技術越來越多,且理論也較為完善,但卻還媒體一項技術被認為是完善的技術,這個時候充分利用無源光網絡技術則是可行的一種選擇,推動光波分復用技術的發展,逐漸根據社會需求,采用WDM-PON方式建設FTTH網絡。
2結論