時間:2022-02-28 01:17:18
引言:易發(fā)表網(wǎng)憑借豐富的文秘實踐,為您精心挑選了九篇人工智能課程論文范例。如需獲取更多原創(chuàng)內(nèi)容,可隨時聯(lián)系我們的客服老師。
>> 研究生人工智能系列課程教學(xué)改革 研究生人工智能課程教學(xué)探索 研究生“人工智能”課程教學(xué)改革探索 人工智能實驗課教學(xué)改革研究 人工智能課程全英文教學(xué)改革 創(chuàng)新型人工智能教學(xué)改革與實踐 《人工智能》碩士課程教學(xué)改革的研究與實踐 落實科學(xué)發(fā)展觀,深化“人工智能”課程的教學(xué)改革 面向人工智能的信息管理與信息系統(tǒng)專業(yè)教學(xué)改革 人工智能課程教學(xué)方法研究 人工智能的應(yīng)用研究 日本巨資扶持人工智能研究 人工智能系列課程研究 高中人工智能教學(xué)初探 《人工智能》雙語教學(xué)初索 人工智能雙語教學(xué)建設(shè) 人工智能實驗教學(xué)探討 “人工智能”之父 人工智能 AI人工智能 常見問題解答 當(dāng)前所在位置:l(美國人工智能協(xié)會)、caiac.ca/(加拿大人工智能協(xié)會)等,它們包括了學(xué)科前沿動態(tài)、討論交流及大量的代碼資源等。通過使用這些資源,學(xué)員可及時了解人工智能最新發(fā)展動態(tài),進(jìn)行人工智能程序設(shè)計的交流及對一些問題進(jìn)行較為深入的探討。
2教學(xué)方法研究
研究生教學(xué)應(yīng)更突出學(xué)生的主體地位,注重發(fā)揮其學(xué)習(xí)的主動性和自覺性,為此,課程組結(jié)合課程特點,在教學(xué)方法進(jìn)行了如下探索。
2.1加強(qiáng)教學(xué)設(shè)計
教學(xué)設(shè)計就是對教學(xué)活動進(jìn)行系統(tǒng)計劃的過程, 是教什么(課程內(nèi)容)及怎么教(組織、方法、策略、手段及其他傳媒工具的使用等)的過程[2]。在教學(xué)過程中,每節(jié)課授課前,堅持集體備課的原則,由課程組集體討論選定授課內(nèi)容,補(bǔ)充閱讀文獻(xiàn),根據(jù)授課對象與課程內(nèi)容特點,確定課堂組織方式,采用的授課方式以研討式教學(xué)為主,給合講授、實驗、自學(xué)等。
2.2抓好課堂教學(xué)環(huán)節(jié)
教學(xué)方法與教學(xué)手段是保證課堂教學(xué)效果的關(guān)鍵。本課程授課對象主要為碩士研究生,他們的接受能力較強(qiáng),有一定的求知欲。由于學(xué)員人數(shù)較少,授課方式可靈活組織。教室有完備的多媒體設(shè)備,基本的軟件實驗環(huán)境,教學(xué)過程可采用靈活教學(xué)方法、多種教學(xué)手段,提高教學(xué)效率,保證授課質(zhì)量。
1) 以研討式為主的教學(xué)方式。研究生教學(xué)應(yīng)堅持學(xué)術(shù)研究為導(dǎo)向,發(fā)揮學(xué)員在學(xué)習(xí)過程中的主動性和自覺性。由于研究生學(xué)員有一定的學(xué)習(xí)基礎(chǔ)與自學(xué)能力,教員可以在課前給學(xué)員布置預(yù)習(xí)內(nèi)容,學(xué)員通過查閱資料、分析整理進(jìn)而形成自己的觀點,使在課堂教學(xué)中師生互動交流成為可能,改變傳統(tǒng)的教員講,學(xué)員聽的灌輸式教學(xué)方式。研討式教學(xué)也有力于培養(yǎng)學(xué)員積極思考、創(chuàng)新思維的習(xí)慣與能力。
2) 教學(xué)手段的信息化。人工智能原理教學(xué)一個突出矛盾是知識點多、內(nèi)容抽象、理論性強(qiáng),但學(xué)時較少,因此,必須發(fā)揮現(xiàn)代教學(xué)手段的作用,提高教學(xué)效率。為此,課程組對每節(jié)課都精心設(shè)計了教學(xué)課件,課堂教學(xué)中以課件為主,輔以板書,充分利用多媒體信息量大、直觀等優(yōu)點,改善教學(xué)效果;引入教學(xué)聲像資料,便于學(xué)員課下學(xué)習(xí);設(shè)計演示程序,使部分比較抽象、不易于理解的內(nèi)容,如子句歸結(jié)、搜索策略更形象直觀,易于學(xué)習(xí)和掌握。
3注重培養(yǎng)學(xué)員學(xué)術(shù)研究能力
學(xué)術(shù)能力是指專門對某一學(xué)問進(jìn)行系統(tǒng)的哲理或理論研究的能力,它不僅包括思辨的方面,還包括實踐及感性的敏感力等方面。研究生階段學(xué)習(xí)的一個突出特點是要求學(xué)習(xí)的主體――研究生必須具備研究的能力[3]。論文寫作是培養(yǎng)、鍛煉、提高研究生的學(xué)術(shù)能力的重要途徑,在教學(xué)實施過程中,要求每個專題學(xué)習(xí)結(jié)束后,都要提交一份格式符合期刊發(fā)表要求的總結(jié)報告,題目可自行選定,也可由教員指定;內(nèi)容既可以是人工智能該專題某一算法的實現(xiàn),也可以是對某一問題的進(jìn)一步研究,或者是對該專題最新研究進(jìn)展的綜述。教員重點在以下幾個方面予以指導(dǎo)。
1) 選題準(zhǔn)確。要求選題不能過于宏大,應(yīng)以小題目反映大問題,具有一定的可研究性為宜。
2) 研究內(nèi)容。研究目標(biāo)明確,方法恰當(dāng),能夠提出自己的見解,所提觀點正確。
3) 論文結(jié)構(gòu)。結(jié)構(gòu)清晰、完整,論述嚴(yán)謹(jǐn),表達(dá)規(guī)范。
4) 占有文獻(xiàn)豐富。撰寫過程中要有意識培養(yǎng)學(xué)員查閱科技文獻(xiàn)的能力,要求查閱反映最新研究成果的權(quán)威文獻(xiàn)。
4加強(qiáng)實驗環(huán)節(jié)教學(xué)
人工智能教學(xué)在進(jìn)行各種理論知識講授的同時,還應(yīng)重視實踐教學(xué),把抽象的知識轉(zhuǎn)化為形象、直觀的實驗,讓學(xué)員真正理解人工智能的概念、本質(zhì)、研究目標(biāo),從而提高學(xué)員多角度思維的能力和邏輯推理能力,進(jìn)一步了解信息技術(shù)、計算機(jī)技術(shù)發(fā)展的前沿,培養(yǎng)他們對人工智能研究的興趣,激發(fā)對人工智能技術(shù)未來的追求。為此,課程組借鑒國內(nèi)外知名大學(xué)人工智能實驗教學(xué)經(jīng)驗,編寫了《人工智能原理實驗指導(dǎo)書》,圍繞問題表示、經(jīng)典邏輯推理、不確定推理、搜索策略及簡單專家系統(tǒng)實現(xiàn)等教學(xué)內(nèi)容提供了7組實驗供學(xué)員選擇。
例如,在狀態(tài)空間搜索一節(jié)教學(xué)過程中,先完成理論部分的教學(xué),使學(xué)員對狀態(tài)空間基本概念、問題表示及求解方法有一個準(zhǔn)確的認(rèn)識,然后進(jìn)行實驗教學(xué)。由學(xué)員自主完成重排九宮問題求解的程序,初始狀態(tài)和目標(biāo)狀態(tài)如圖1所示,調(diào)整的規(guī)則是,每次只能將與空格(左、上、下、右)相鄰的一個數(shù)字平移到空格中[4]。實驗過程重點指導(dǎo)學(xué)員掌握狀態(tài)空間進(jìn)行問題求解的關(guān)鍵步驟:問題表示和搜索策略。問題表示就是要確定該問題的基本信息及程序?qū)崿F(xiàn)的數(shù)據(jù)結(jié)構(gòu),基本信息有初始狀態(tài)集合、操作符集合、目標(biāo)檢測及路徑費用函數(shù),數(shù)據(jù)結(jié)構(gòu)可采用向量、鏈表等形式;搜索策略可分為盲目式搜索和啟發(fā)式搜索,可按照先易后難的原則,先實現(xiàn)盲目搜索中的廣度優(yōu)先及深度優(yōu)先搜索,在此基礎(chǔ)上再定義估價函數(shù)實現(xiàn)啟發(fā)式搜索。而在啟發(fā)式搜索實現(xiàn)過程中,又可以通過定義不同的啟發(fā)函數(shù):如某狀態(tài)格局與目標(biāo)節(jié)點格局不相同的牌數(shù)、不在目標(biāo)位置的牌距目標(biāo)位置的距離之和等加以比較,準(zhǔn)確理解啟發(fā)函數(shù)的意義。通過實驗,學(xué)員加深了對課堂講授的理論知識的理解,能夠熟練地將狀態(tài)空間法運用于實際問題的求解,提高了工程實踐能力。
實驗教學(xué)組織方式可根據(jù)具體的實驗內(nèi)容特點,采用上機(jī)編程實驗、演示程序驗證、模擬平臺開發(fā)、分組討論等多種形式進(jìn)行。
5適度開展雙語教學(xué)
研究生的英語基礎(chǔ)普遍較好,基本都通過了國家公共英語四級考試,部分學(xué)員通過了六級考試,加之在本科階段還開設(shè)了專業(yè)英語課程,因此,在培養(yǎng)研究生人工智能知識的同時,我們要提高學(xué)員閱讀原版英文資料、用英語進(jìn)行簡單科技寫作及對外學(xué)術(shù)交流的能力,適度開展雙語教學(xué),對此,我們可采取以下基本方式。
1) 專業(yè)術(shù)語全部用英語表示。
在教學(xué)過程中用英語表達(dá)人工智能原理中的專業(yè)術(shù)語和主要概念,如Knowledge Representation(知識表示)、Depth-First Search(深度優(yōu)先搜索)、Breadth- First Search(廣度優(yōu)先搜索)等。
2) 以英文原版教材為教學(xué)參考書。
選定機(jī)械工業(yè)出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》為參考書,該書“是人工智能課程的完美補(bǔ)充。它既能給讀者以歷史的觀點,又給出所有技術(shù)的實用指南[5]。”
3) 加強(qiáng)英文文獻(xiàn)的閱讀。
在課程論文撰寫時,要求閱讀一定數(shù)量的外文文獻(xiàn);在討論課中,鼓勵學(xué)員使用英語進(jìn)行討論。
經(jīng)過課程學(xué)習(xí),學(xué)員都能準(zhǔn)確掌握人工智能學(xué)科專業(yè)詞匯,英文運用能力得到一定提高,能較自如地閱讀原版英文專業(yè)資料,為進(jìn)一步用英文進(jìn)行學(xué)術(shù)交流及學(xué)術(shù)論文寫作打下基礎(chǔ)。
6考試與成績評定改革
考核方式采用傳統(tǒng)的試卷與課程論文、實踐環(huán)節(jié)等三部分組成,全面考查學(xué)員對基礎(chǔ)理論知識掌握情況以及理論聯(lián)系實際的能力,其中試卷占70%,課程論文占10%,實踐環(huán)節(jié)占20%。課程論文題目不作限制,由學(xué)員在課程學(xué)習(xí)階段結(jié)合某一專題選定題目,課程論文以選題意義、研究內(nèi)容、論文結(jié)構(gòu)、參考文獻(xiàn)及撰寫規(guī)范等指標(biāo)為評價依據(jù);實驗成績采用實驗過程考查、實驗結(jié)果驗收和實驗報告評閱相結(jié)合的考核方法,綜合評定。這樣做不但考核了學(xué)員人工智能基本理論掌握情況,也反映了學(xué)員的學(xué)術(shù)研究能力和工程實踐能力。同時,考核結(jié)合實際教學(xué)進(jìn)程,改變了單一課終總結(jié)性考核的弊端。
7結(jié)語
經(jīng)過課程組近兩年的教學(xué)方法研究與教學(xué)實踐,研究生人工智能原理課程教學(xué)收到較好的效果,但仍存在一些問題,如在課堂討論環(huán)節(jié),個別學(xué)員準(zhǔn)備不充分、討論不夠深入;課程論文撰寫選題隨意,文獻(xiàn)綜述不夠全面、準(zhǔn)確,論文格式不夠規(guī)范等。在今后的授課中,課程組將根據(jù)授課研究生人數(shù)較少的特點,采取明確每名學(xué)員預(yù)習(xí)重點、加強(qiáng)課程論文交流等方式予以改進(jìn),力求取得更好的教學(xué)效果。同時,進(jìn)一步充分利用便利的校園網(wǎng)平臺,開展“人工智能原理”網(wǎng)絡(luò)課程建設(shè),購買或自主開發(fā)網(wǎng)絡(luò)教學(xué)資源,引導(dǎo)學(xué)員利用網(wǎng)絡(luò)資源進(jìn)行個性化自主學(xué)習(xí),增強(qiáng)教學(xué)過程的信息化程度。
參考文獻(xiàn):
[1] 王永慶. 人工智能原理與方法[M]. 西安:西安交通大學(xué)出版社,2002:1.
[2] 李志厚. 國外教學(xué)設(shè)計研究現(xiàn)狀與發(fā)展趨勢[J]. 外國教育研究,1998(1):6-10.
[3] 肖川,胡樂樂. 論研究生學(xué)術(shù)能力的培養(yǎng)[J]. 學(xué)位與研究生教育,2006(9):1-5.
[4] 周金海. 人工智能學(xué)習(xí)輔導(dǎo)與實驗指導(dǎo)[M]. 北京:清華大學(xué)出版社,2008:204.
[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:機(jī)械工業(yè)出版社,2009:754.
Reform on Postgradrates Artificial Intelligence Course Teaching
TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei
(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.
P鍵詞: 人工智能;創(chuàng)新;本科
Key words: artificial intelligence;innovation;undergraduate
中圖分類號:G642 文獻(xiàn)標(biāo)識碼:A 文章編號:1006-4311(2017)22-0230-02
0 引言
人工智能是計算機(jī)科學(xué)的一個分支,是當(dāng)前科學(xué)技術(shù)中正在迅速發(fā)展、新思想、新觀點、新理論、新技術(shù)不斷涌現(xiàn)的一個學(xué)科,其屬于一門邊緣學(xué)科,同時也是多個學(xué)科交叉而成的一門學(xué)科,包括語言學(xué)、哲學(xué)、心理學(xué)、神經(jīng)生理學(xué)、系統(tǒng)論、信息論、控制論、計算機(jī)科學(xué)、數(shù)學(xué)等[1]。當(dāng)前人工智能已經(jīng)是很多高校計算機(jī)相關(guān)專業(yè)的必修課程,它是計算機(jī)科學(xué)與技術(shù)學(xué)科類各專業(yè)重要的基礎(chǔ)課程,其教學(xué)內(nèi)容主要包括自然語言理解、計算智能技術(shù)、問題求解和搜索算法、知識表示和推理機(jī)制、專家系統(tǒng)和機(jī)器學(xué)習(xí)等,國內(nèi)外很多大學(xué)都意識到了其重要性,紛紛對其展開了教學(xué)和研究。人工智能課程包含多個學(xué)科,具有內(nèi)容抽象、理論性強(qiáng)、知識點多等特點,且算法復(fù)雜,但是多數(shù)高校采用的教學(xué)方式仍是傳統(tǒng)的課堂教學(xué)方式,即“教師講、學(xué)生聽”的教學(xué)模式,這種信息單向傳輸教學(xué)模式以教師為主體,學(xué)生只是在被動的接收知識;存在過分重視理論教學(xué),忽視實踐活動教學(xué)的問題,導(dǎo)致教育內(nèi)容無法和社會接軌;人工智能教材理論性過強(qiáng),學(xué)生在學(xué)習(xí)過程中常常感到枯燥乏味,進(jìn)而對學(xué)習(xí)該課程失去熱情[2],久而久之,不僅人工智能課程的教學(xué)質(zhì)量和效果無法達(dá)到預(yù)期,甚至學(xué)生還會產(chǎn)生厭學(xué)心理。針對人工智能課程中現(xiàn)有的各項問題,本文作者結(jié)合自身豐富人工智能教學(xué)實踐經(jīng)驗,參考人工智能課程特點和教學(xué)目標(biāo),從多個方面探討和總結(jié)了人工智能,包括教學(xué)內(nèi)容、教材選擇、教學(xué)方法和考核形式等。
1 教學(xué)內(nèi)容優(yōu)化與更新
人工智能是一門嶄新的學(xué)科。開設(shè)本課程首先是確定教學(xué)內(nèi)容。通常來講,人工智能學(xué)科的內(nèi)容包括兩個部分,具體:一是知識表示和推理;二是人工智能的應(yīng)用。前者是人工智能的重要基礎(chǔ),后者主要介紹了幾種人工智能應(yīng)用系統(tǒng),包括自動規(guī)劃和機(jī)器視覺、機(jī)器學(xué)習(xí)、專家系統(tǒng)等。另外,課程內(nèi)容中還包括了一些人工智能應(yīng)用的實例,將實踐和理論緊密結(jié)合起來[3]。
隨著時代的發(fā)展和科技的進(jìn)步,人工智能學(xué)科也取得了較大發(fā)展。基于此,人工智能學(xué)科也應(yīng)該與時俱進(jìn),更新人工智能教學(xué)大綱,進(jìn)一步完善其教學(xué)內(nèi)容。修訂后的人工智能教學(xué)大綱將人工智能分成兩個部分,即基礎(chǔ)部分和擴(kuò)展應(yīng)用部分。前者包括計算智能、搜索原理、知識表示等,后者包括智能機(jī)器人、智能控制、多智能體、自然語言理解、自動規(guī)劃、機(jī)器學(xué)習(xí)、知識工程等。
教學(xué)內(nèi)容的選擇和確定應(yīng)綜合考慮多項因素,不僅要重視基礎(chǔ)知識,也應(yīng)注意推陳出新,隨著科技的進(jìn)步做到與時俱進(jìn),同時教學(xué)內(nèi)容應(yīng)符合現(xiàn)實的需求,能夠與社會接軌,將理論和實踐緊密結(jié)合起來,只有這樣人工智能課程的教學(xué)質(zhì)量和效果才能事半功倍。
2 教學(xué)策略及教學(xué)方法的改革創(chuàng)新
由于人工智能課程具有算法復(fù)雜、內(nèi)容抽象、理論性強(qiáng)、 知識點多的特點,傳統(tǒng)的教學(xué)模式已經(jīng)無法滿足人工智能課程的需求,教師應(yīng)探索更加有效的教學(xué)模式和方法,確保人工智能課程能夠取得良好的教學(xué)質(zhì)量和教學(xué)效果。具體的改革和創(chuàng)新人工智能課程的手段和方法主要包括以下幾個方面:
2.1 激發(fā)學(xué)生的學(xué)習(xí)興趣 無論是經(jīng)驗還是常識都在告訴我們每個人最好的老師就是興趣,學(xué)生只有對某門學(xué)科存在興趣,才會更加主動積極的學(xué)習(xí)該門課程,從而獲得良好的教學(xué)效果。比如,作者在課程的一開始先播放了一段著名導(dǎo)演斯蒂文?斯皮爾伯格的《Artificial Intelligence》的相關(guān)片段,由這個電影學(xué)生知道了世上存在人工智能的機(jī)器人,學(xué)生們隨著電影情節(jié)的發(fā)展而深深感動,與此同時教師讓學(xué)生思考和談?wù)撊斯ぶ悄苁鞘裁矗垦芯咳斯ぶ悄艿囊饬x在哪里?實踐發(fā)現(xiàn),在課堂中加入電影因素,能夠大大提升學(xué)生們的注意力,讓學(xué)生更加專注在教學(xué)任務(wù)中,有效提高了學(xué)生探索人工智能的積極性和主動性。此外,在教學(xué)中還可以用動畫、視頻、圖片等手段將反映人工智能最新研究和應(yīng)用的成果展示出來,讓學(xué)生更直觀的感受人工智能的奧妙,從而投入更多熱情學(xué)習(xí)人工智能課程。
2.2 面向問題的案例教學(xué)法 案例教學(xué)法是一種以案例為基礎(chǔ)、以能力培養(yǎng)為核心的一種教學(xué)方法[11]。針對學(xué)校學(xué)生特點,我們采取了以下幾種教學(xué)形式實施案例教學(xué)。①講解式案例教學(xué):這種案例通過教師的講解,幫助學(xué)生理解抽象的理論知識點。案例的呈現(xiàn)有兩種基本形式:一是“案例―理論”,即先給出教學(xué)案例,然后再講解理論知識;二是“理論―案例”,即教師先講解理論知識,再給出教學(xué)案例;通過情境體驗與案例剖析激發(fā)學(xué)生認(rèn)知的興趣,引導(dǎo)學(xué)生對將要學(xué)習(xí)的內(nèi)容產(chǎn)生注意,有利于教師導(dǎo)入新課。②討論式案例教學(xué):在課程初期將學(xué)生分成若干學(xué)習(xí)小組,每小組3~4人;教師將提前設(shè)計好的一題多解的教學(xué)案例以及收集的相關(guān)資料分配給每個小組,要求學(xué)生在課余時間通過自學(xué)和組內(nèi)討論的方式給出問題的不同解決方案。③辯論式案例教學(xué):在課程后期,采取專題辯論的方式對綜合應(yīng)用案例進(jìn)行討論,能有效地啟發(fā)學(xué)生全方位地思考和探索問題的解決方法,加深學(xué)生對人工智能的理解。
2.3 個性化學(xué)習(xí)與因材施教 在開展課程教育過程中應(yīng)注意對學(xué)生進(jìn)行個性化教學(xué),結(jié)合學(xué)生特點因材施教。比如,在日常教學(xué)中多觀察學(xué)生情況,鼓勵那些應(yīng)對教學(xué)任務(wù)后仍存在余力的W生深入探索較深層次的課程及相關(guān)知識,同時友善面對學(xué)習(xí)較差的學(xué)生,分析其學(xué)習(xí)過程中面對的困難,有的放矢地采取應(yīng)對措施,幫助其不斷進(jìn)步;在教學(xué)過程中讓學(xué)生以讀書報告的形式多多思考,鼓勵學(xué)生發(fā)散性思考問題,鼓勵優(yōu)秀學(xué)生進(jìn)行深一步的探討,并且教師應(yīng)幫助具有新穎思想或論點的學(xué)生將其智慧以科技論文和發(fā)表文章的形式轉(zhuǎn)化為成果。
2.4 注重綜合能力培養(yǎng) 在研究型教學(xué)中任務(wù)驅(qū)動是一種常用的教學(xué)方法,其中心導(dǎo)向是任務(wù),學(xué)生在完成任務(wù)的同時也在吸收和掌握知識。通常來講,該教學(xué)方法的步驟是:教師提出任務(wù)師生共同分析以得出完成任務(wù)的方法和步驟適當(dāng)講解或自學(xué)、協(xié)作學(xué)習(xí)完成任務(wù)交流和總結(jié)。”[3]該教學(xué)模式不僅有利于培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識,還能夠培養(yǎng)學(xué)生解決實際問題的能力,提高其綜合實力。不僅如此,由于該教學(xué)模式通常是以小組協(xié)作的方式進(jìn)行,教師給出研究范圍,學(xué)生自愿結(jié)組并選擇具體的題目,經(jīng)過分析和討論后以程序設(shè)計或者論文的形式協(xié)作完成研究。由此可知,學(xué)生是在以團(tuán)隊的力量解決問題,這十分考驗學(xué)生的團(tuán)隊協(xié)作能力,對于學(xué)生團(tuán)隊合作精神的培養(yǎng)至關(guān)重要,且在完成任務(wù)的過程中學(xué)生需要查閱大量的資料,久而久之學(xué)生收集資料和創(chuàng)新能力勢必會得到提升。
2.5 采用啟發(fā)式教學(xué) 人工智能的很多問題都較為抽象,對學(xué)生理解力的要求較高,因此,在實際的教學(xué)過程中教師應(yīng)有意識的就課程內(nèi)容提出相關(guān)問題,讓學(xué)生自己獨立思考,鼓勵學(xué)生提出自己的想法和解決方案。然后回歸到課程上,對比分析教材上的解決方案和學(xué)生自己的解決方案,如此不僅培養(yǎng)了學(xué)生獨立思考的能力,也增加了學(xué)生參與教學(xué)活動的意識,提高了學(xué)生的學(xué)習(xí)熱情。比如,在講到較為抽象的“遺傳算法”時,先提出一個問題,即“遺傳算法如何用于優(yōu)化計算?”,然后從“達(dá)爾文的生物進(jìn)化論”入手,討論“遺傳”、“變異”和“選擇”作用,之后舉例分析,啟發(fā)學(xué)生思考“遺傳”、“變異”和“選擇”的實現(xiàn),最后師生一起導(dǎo)出遺傳算法用于優(yōu)化計算的基本步驟。如此既完成了教授遺傳算法的目的,也鍛煉了學(xué)生邏輯思維的能力,教學(xué)效果良好[4]。
3 作業(yè)和考核方式的改革創(chuàng)新
過去的課程作業(yè)都是單一書面習(xí)題作業(yè),發(fā)展至今,課程作業(yè)形式已經(jīng)發(fā)生了變化,更加豐富多樣,包括必須交給教師評閱的書面家庭作業(yè)和不必交給教師的課外思考題目、口頭布置的思考題或閱讀材料以及大型作業(yè)等。其中通過網(wǎng)絡(luò)就可以完成上交作業(yè),并且教師批閱作業(yè)后也可以通過網(wǎng)絡(luò)返回給學(xué)生,實現(xiàn)了網(wǎng)絡(luò)化。課程的考核方式較之以前也發(fā)生了較大變化,加強(qiáng)了平時思維能力的考核,更加注重學(xué)生實驗?zāi)芰蛣邮帜芰Φ呐囵B(yǎng),不再是絕對的一次考試定成績,而是在總評成績中加入30%的平時成績,如此不僅減輕了學(xué)生的期末負(fù)擔(dān),也迫使學(xué)生更加重視平時的學(xué)習(xí)思考,有利于課程教學(xué)質(zhì)量的提升。
4 結(jié)束語
本文是以提高教學(xué)質(zhì)量為目標(biāo),結(jié)合教學(xué)實踐,從教學(xué)體系、教學(xué)內(nèi)容、教學(xué)方法、考核方式等方面對本科人工智能課程的教學(xué)改革進(jìn)行了探討,總結(jié)了該課程在教學(xué)和實踐方面的一些教改舉措。這些舉措符合二十一世紀(jì)高校教學(xué)的要求,可以支持教師提高教學(xué)手段現(xiàn)代化的水平,同時更貼合學(xué)生的學(xué)習(xí)需求。作為該課程的授課教師應(yīng)始終保持對教學(xué)內(nèi)容的不斷更新、教學(xué)方法的多樣化,才能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)他們的思維創(chuàng)新和技術(shù)創(chuàng)新的能力,最終提高本課程的教學(xué)質(zhì)量。從學(xué)生的反饋來看,作者所總結(jié)的教學(xué)實踐具有明顯的教學(xué)效果。但仍有許多方面做得不夠,今后將繼續(xù)在教學(xué)過程中不斷總結(jié)成功的經(jīng)驗,吸取失敗的教訓(xùn)。
參考文獻(xiàn):
[1]蔡自興.人工智能及其應(yīng)用[M].三版.北京:清華大學(xué)出版社,2007.
[2]謝榕,李霞.人工智能課程教學(xué)案例庫建設(shè)及案例教學(xué)實踐[J].計算機(jī)教育,2014(19):92-97.
[3]蔡自興,肖曉明,蒙祖強(qiáng).樹立精品意識搞好人工智能課程建設(shè)[J].中國大學(xué)教學(xué),2004(1):28-29.
關(guān)鍵詞:航天類專業(yè) 人工智能 教學(xué)探索
中圖分類號:G64 文獻(xiàn)標(biāo)識碼:A 文章編號:1674-098X(2014)10(b)-0155-02
面對航天科技迅猛發(fā)展,現(xiàn)代軍備技術(shù)快速提升,培養(yǎng)具有專業(yè)性的高素質(zhì)航天類人才,是我國航天科技發(fā)展的戰(zhàn)略選擇,也是航天重點高校面向并有效服務(wù)航天事業(yè)的歷史責(zé)任。航天類本科生的教育形式也需要突破傳統(tǒng)的方式,著重多樣性、前沿性、工程性,因此,該專業(yè)的各門課程教育都應(yīng)該結(jié)合專業(yè)特點,探索新的教學(xué)模式。
人工智能自1956年誕生50多年以來,引起眾多科研機(jī)構(gòu)、政府和企業(yè)的空前關(guān)注,已成為一門具有日臻完善的理論基礎(chǔ)、日益廣泛的應(yīng)用領(lǐng)域和廣泛交叉的前沿學(xué)科。由于航天領(lǐng)域的特殊要求,人工智能在其發(fā)展中發(fā)揮著不可替代的重要作用,各發(fā)達(dá)國家都相繼開展了人工智能與航天技術(shù)相結(jié)合的研究,致力于實現(xiàn)可重構(gòu)的、具有容錯能力的、智能的飛行系統(tǒng)和管理系統(tǒng)。因此,“人工智能”作為航天類專業(yè)的一門特色選修課,應(yīng)結(jié)合專業(yè)特點展開更具有實用性和創(chuàng)新性的教學(xué)。
1 人工智能課程特點
一方面,“人工智能”是一門多學(xué)科交叉的綜合學(xué)科,它涉及計算機(jī)科學(xué)、數(shù)學(xué)、心理學(xué)、認(rèn)知科學(xué)等眾多領(lǐng)域,具有知識點多、涉及面廣、內(nèi)容抽象、不易理解、理論性強(qiáng)等特點,使得該課程的教學(xué)具有較大的靈活度和較高的難度。另一方面,“人工智能”是一門正在發(fā)展中的學(xué)科,具有較強(qiáng)的前沿性,計算機(jī)科學(xué)、信息科學(xué)、生物科學(xué)等相關(guān)學(xué)科的發(fā)展不斷的提出了許多新的研究目標(biāo)和研究課題,使得人工智能的技術(shù)和算法也需要不斷更新,這在很大程度上增加了“人工智能”課程的教學(xué)難度。
2 航天類專業(yè)特點
首先,航天類專業(yè)具有較強(qiáng)的工程性。在專業(yè)的教學(xué)改革中有統(tǒng)一的特點,即強(qiáng)調(diào)要體現(xiàn)航天工程技術(shù)的綜合性、系統(tǒng)性, 注重培養(yǎng)復(fù)合型人才。其次,航天類專業(yè)具有一定的前沿性。因為航天飛行器作為現(xiàn)代高科技和多種學(xué)科技術(shù)綜合應(yīng)用的結(jié)晶,應(yīng)及時把現(xiàn)代先進(jìn)科技融入到了專業(yè)基礎(chǔ)和專業(yè)類的課程教學(xué)中, 專業(yè)知識更新快成為又一特點;另外,航天類專業(yè)應(yīng)注重實踐性教育。尊重個性和興趣,強(qiáng)調(diào)動手能力,實驗室對學(xué)生開放,要求學(xué)生自主地設(shè)計完成實驗,強(qiáng)調(diào)對學(xué)生設(shè)計理念和創(chuàng)造能力的培養(yǎng)。最后,航天類專業(yè)應(yīng)重視產(chǎn)學(xué)合作。產(chǎn)學(xué)合作的目的在于推動學(xué)校與航天產(chǎn)業(yè)的持續(xù)全面合作,造就一支科學(xué)技術(shù)研究和工程實踐兼?zhèn)涞慕處熽犖椤?/p>
3 教學(xué)模式的探索
3.1 教材的選擇
人工智能作為一門新興的學(xué)科,其理論與方法都還在不斷的發(fā)展與完善中。就目前來看,關(guān)于人工智能的定義和范圍都沒有一個統(tǒng)一的標(biāo)準(zhǔn),不同的教材所介紹的內(nèi)容也不盡相同。在教材選用方面,需要綜合考慮專業(yè)特點和學(xué)生的知識背景。本課程主要針對航天類專業(yè)高年級本科生,該類學(xué)生具有一定的數(shù)學(xué)、計算機(jī)、信息論、通信理論等基礎(chǔ)知識,對航天應(yīng)用的基本需求有初步的了解,因此,“人工智能”課程難度應(yīng)該控制在中級,可以較深入的介紹人工智能的基礎(chǔ)算法和應(yīng)用案例。
中南大學(xué)蔡自興教授積累了多年的教學(xué)與科研經(jīng)驗,借鑒了國內(nèi)外其他專家和作者的最新研究成果,吸取了國內(nèi)和國外人工智能領(lǐng)域?qū)W術(shù)書籍的長處,于1987年編寫了“人工智能及其應(yīng)用”一書,該書根據(jù)人工智能學(xué)科的新發(fā)展不斷修訂,推出四個版本。本課程采用“人工智能及其應(yīng)用(第4版)”,其中大部分內(nèi)容適合本科生學(xué)習(xí)。另外,本課程還給學(xué)生提供其他一些參考書目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等經(jīng)典教材。
3.2 課堂教學(xué)形式的探索
“人工智能”課程內(nèi)容較抽象,概念較為繁多,若采用單一的課堂講授的方式,學(xué)生容易概念混淆、理解不透,逐漸產(chǎn)生厭倦情緒,導(dǎo)致教學(xué)效果差。本文探索不同的課堂教學(xué)手段,根據(jù)不同內(nèi)容采用不同的教學(xué)手段,有利于學(xué)生對課程內(nèi)容的理解與吸收。另外,考慮到航天類的專業(yè)特點,突出課程內(nèi)容的工程應(yīng)用,增加研究性質(zhì)的教學(xué)內(nèi)容與形式,有利于培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。
(1)課件采用圖文并茂的PPT。綜合利用文字、圖像、聲音、視頻等多種媒體表示方法,在介紹原理和概念時采用精辟的文字,介紹算法流程時采用圖像,介紹算法應(yīng)用時采用視頻。在PPT中適當(dāng)利用不同的字體、顏色或動畫來突出重點,細(xì)化流程,引導(dǎo)學(xué)生的思路,便于集中注意力接受重點內(nèi)容。
(2)適當(dāng)增加課堂討論與練習(xí)。對于人工智能的一些基本問題,可以引導(dǎo)學(xué)生進(jìn)行調(diào)研和討論,來深化課程內(nèi)容的了解,并提高學(xué)生的學(xué)習(xí)興趣;對于重要的算法和理論,可以增加課堂練習(xí),讓學(xué)生實際動手進(jìn)行公式的推導(dǎo)或演算,并在練習(xí)中分析學(xué)生對問題的理解程度,有針對性的增加講解或指導(dǎo)。
(3)適當(dāng)采用類比的講解方式。對人工智能的不同學(xué)派,不同方方法,以及方法的不同應(yīng)用,廣泛的采用類比的形式進(jìn)行講解,不僅可以復(fù)習(xí)已學(xué)習(xí)的內(nèi)容,也利于對新內(nèi)容的理解。并且,通過對不同內(nèi)容的比較總結(jié)相似點、區(qū)分不同點,可以避免概念的混淆,清晰的掌握課程內(nèi)容。
(4)增加研究性教學(xué)。研究性教學(xué)強(qiáng)調(diào)通過問題來進(jìn)行學(xué)習(xí),有必要將實際應(yīng)用案例或者授課教師的科研項目融入日常的教學(xué)工作中去,用“啟發(fā)式”、“案例式”教學(xué)激發(fā)學(xué)生“自主學(xué)習(xí)”能力。
3.3 課程內(nèi)容的探索
一方面,鑒于本科生知識結(jié)構(gòu)還不夠完善,“人工智能”課程的內(nèi)容要控制在適應(yīng)本科生學(xué)科基礎(chǔ)的中等難度;另一方面,鑒于航天類專業(yè)的特點,課程內(nèi)容應(yīng)更注重與航天應(yīng)用相結(jié)合的內(nèi)容,并且在課程中增加具體應(yīng)用的介紹。具體的課程內(nèi)容如表1所示。
3.4 考核形式的改革
“人工智能”課程注重學(xué)生創(chuàng)新能力和實踐能力的培養(yǎng),傳統(tǒng)的試卷形式不能全面的反應(yīng)學(xué)生的學(xué)習(xí)效果,因此,應(yīng)采用課堂表現(xiàn)和課程報告相結(jié)合的方式進(jìn)行綜合考核。
一方面,重視學(xué)生提出問題、分析問題和解決問題的能力,對學(xué)生課堂討論與練習(xí)的表現(xiàn)進(jìn)行考核評分,作為總成績的參考;另一方面,注重學(xué)生課題調(diào)研和實踐的能力,采取提交課程論文的形式進(jìn)行考核。正確引導(dǎo)學(xué)生根據(jù)個人興趣、課程內(nèi)容、可行性、實踐難度進(jìn)行合理選題,并根據(jù)所選題目進(jìn)行文獻(xiàn)查閱和總結(jié),完成調(diào)研報告或算法實現(xiàn)報告。結(jié)合者兩個方面進(jìn)行最終成績的評定,綜合衡量學(xué)生問題分析能力、論文寫作能力和創(chuàng)新實踐能力。
4 結(jié)語
航天類專業(yè)的本科生教學(xué)需針對專業(yè)特點有的放矢,該專業(yè)的課程教育都應(yīng)該趨向于前沿性、專業(yè)性和實用性。本文的“人工智能”課程教學(xué)改革方案不僅考慮到該課程屬于前沿叉學(xué)科的特點,也綜合考慮了航天類專業(yè)的特點。為了使課程教學(xué)更好地服務(wù)于學(xué)生,本文提出的改革方案打破傳統(tǒng)的教學(xué)模式,將課堂理論講解、課堂討論、課后調(diào)研、項目實踐等相結(jié)合,充分調(diào)動學(xué)生的學(xué)習(xí)興趣和積極性,提高學(xué)生的創(chuàng)新能力,有利于培養(yǎng)真正符合航天領(lǐng)域所需要的綜合型高級人才。
參考文獻(xiàn)
[1] 王甲海,印鑒,凌應(yīng)標(biāo).創(chuàng)新型人工智能教學(xué)改革與實踐[J].計算機(jī)教育,2010(15):136-138,148.
[2] 劉興林.大學(xué)本科人工智能教學(xué)改革與實踐[J].福建電腦,2010(8):198-199.
[3] 懷麗波.32課時《人工智能基礎(chǔ)》課程教學(xué)的幾點思考[J].華章,2013(34):193-194.
[4] 紀(jì)霞,李龍澍.本科人工智能教學(xué)研究[J].科教文匯(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,楊慧.《人工智能》課程教學(xué)方法改革的探索與實踐[J].現(xiàn)代計算機(jī)(專業(yè)版),2013(26):32-34.
[6] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學(xué)的探討[J].宿州學(xué)院學(xué)報,2008(1):146-148.
[7] 張偉峰.本科高年級人工智能教學(xué)的幾點思考[J].計算機(jī)教育,2009(11):139-141.
關(guān)鍵詞:人工智能;教學(xué)改革;教學(xué)方法
引言
人工智能(ArtificialIntelligence)是一門研究和模擬人類智能的跨領(lǐng)域?qū)W科,是模擬、延伸和擴(kuò)展人的智能的一門新技術(shù)。由于信息環(huán)境巨變與社會新需求的爆發(fā),人工智能技術(shù)的日趨成熟。隨著AI3.0時代的到來,大數(shù)據(jù)、云計算等新技術(shù)的應(yīng)用也愈發(fā)廣泛,對于管理類人才來說,加強(qiáng)對人工智能知識的深入學(xué)習(xí),不斷將人工智能技術(shù)與管理知識結(jié)合起來,對其未來職業(yè)生涯的發(fā)展有著重要作用。人工智能是一門前沿學(xué)科,管理學(xué)院開設(shè)人工智能課程的目的是為了更好地培養(yǎng)學(xué)生的技術(shù)創(chuàng)新思維與能力,基于其覆蓋面廣、包容性強(qiáng)、應(yīng)用需求空間巨大的學(xué)科特點,通過概率統(tǒng)計、數(shù)據(jù)結(jié)構(gòu)、計算機(jī)編程語言、數(shù)據(jù)庫原理等基礎(chǔ)課程的學(xué)習(xí),加強(qiáng)學(xué)生解決實際問題的能力,為就業(yè)打下基礎(chǔ)。本文基于社會對于人工智能領(lǐng)域的人才需求,結(jié)合諸多長期從事經(jīng)管類專業(yè)課程教學(xué)的老師意見,針對管理類人才的人工智能課程教學(xué)內(nèi)容與方法進(jìn)行探討,以期對中國高校人工智能課程教學(xué)改革研究提供幫助與借鑒。
1、教學(xué)現(xiàn)狀與問題
作為一門綜合性、實踐性和應(yīng)用性很強(qiáng)的理論技術(shù)學(xué)科,人工智能課程內(nèi)容及內(nèi)涵及其豐富,外延極其廣泛。學(xué)習(xí)這門課程,需要較好的數(shù)學(xué)基礎(chǔ)和較強(qiáng)的邏輯思維能力。針對管理類人才,該課程在課程教學(xué)過程中存在幾個較為突出的問題。(1)課堂教學(xué)氛圍枯燥目前,中國大多數(shù)大學(xué)仍采用傳統(tǒng)的課堂教學(xué)模式,在教學(xué)過程中照本宣科,忽略與學(xué)生的互動,并且缺乏能夠有效引起學(xué)生學(xué)習(xí)興趣與加深知識理解的教學(xué)環(huán)節(jié)設(shè)置,如此一來大大降低了學(xué)生自主思考的能力。在進(jìn)行人工智能相關(guān)課程知識講解時,隨著章節(jié)的知識難度不斷增加,單向介紹式的枯燥教學(xué)方式無法反映人工智能學(xué)科的全貌,課堂講解難以同時給以學(xué)生感性和理性的認(rèn)知,部分學(xué)生因乏味的課堂氛圍漸漸無法跟上教學(xué)進(jìn)度,導(dǎo)致學(xué)習(xí)動力不足。(2)基礎(chǔ)課程掌握不牢管理類專業(yè)的學(xué)生大部分都會走向更加具體化的管理崗位,具有多學(xué)科的素養(yǎng),但這也導(dǎo)致很多學(xué)生所學(xué)知識雜而不精。學(xué)生在基礎(chǔ)不夯實的情況下去學(xué)習(xí)更高層面的知識,給學(xué)生學(xué)習(xí)與老師教學(xué)都造成了很大困擾。人工智能課程知識點較多,涵蓋模式識別、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等眾多內(nèi)容,概念抽象,不易學(xué)習(xí)。一些管理類專業(yè)的學(xué)生未能熟練掌握高等數(shù)學(xué)、運籌學(xué)、數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)庫技術(shù)等先修課程,缺乏一定的關(guān)聯(lián)思考和研究意識,導(dǎo)致課程學(xué)習(xí)難度增加,產(chǎn)生學(xué)時不足和教學(xué)內(nèi)容難點過多的問題。(3)教學(xué)與實際應(yīng)用脫節(jié)當(dāng)下,人工智能廣泛應(yīng)用于機(jī)器視覺、智能制造等各個領(lǐng)域,給學(xué)生提供了大量的現(xiàn)實案例,使得人工智能不再是高深莫測的理論,而是現(xiàn)實中可以觸及的內(nèi)容。例如,在機(jī)械學(xué)科領(lǐng)域,人工智能技術(shù)是電氣工程、機(jī)械設(shè)計制造、車輛工程等方向的重要技術(shù)來源;在醫(yī)療領(lǐng)域,是醫(yī)療器械的創(chuàng)新生產(chǎn)源動力;在能動領(lǐng)域,是高端能源裝備與新能源發(fā)展的重要驅(qū)動;在光電信息與計算機(jī)工程領(lǐng)域,技術(shù)的發(fā)展時刻推動著智能科學(xué)與技術(shù)核心價值的提升。然而,對于管理類專業(yè)的學(xué)生來說,現(xiàn)階段的人工智能教材涵蓋許多智能算法及相關(guān)理論,在教學(xué)過程中常常涉及到很多從未接觸過的抽象理論和復(fù)雜算法,書本中的應(yīng)用實例大多紙上談兵,缺乏專門適用于管理類專業(yè)知識與人工智能技術(shù)相結(jié)合的教學(xué)實踐,加上一些教師授課方法單一,不利于引導(dǎo)學(xué)生將人工智能算法應(yīng)用于現(xiàn)實生活。另外,大學(xué)生對知識的理解能力差異很大,教師采用統(tǒng)一的方式教給他們,這使一些學(xué)生無法跟上和理解,教師也無法控制學(xué)生的學(xué)習(xí)狀況,導(dǎo)致學(xué)生缺乏動力。因此,如何結(jié)合學(xué)生的現(xiàn)實情況,提高他們的動手能力和實踐經(jīng)驗也是人工智能課程教學(xué)要考慮的問題。
2、管理類人才的人工智能課程教學(xué)改進(jìn)策略
課程教學(xué)改革是一項提高大學(xué)教學(xué)效果和人才培養(yǎng)質(zhì)量的重要手段。如何在時代背景下應(yīng)用新技術(shù)和新思想進(jìn)行實施課程教學(xué)改革是高校亟待解決的問題。對于高校的教學(xué)工作而言,教學(xué)目標(biāo)、教學(xué)內(nèi)容和教學(xué)方式的變化不再是課程資源的簡單數(shù)字化和信息化,而是充分利用時代信息資源優(yōu)勢的新型教學(xué)模式。針對管理類專業(yè)人工智能課程教學(xué)過程中存在的問題,可以從教學(xué)方法改進(jìn)和教學(xué)內(nèi)容設(shè)置兩個方面進(jìn)行課程教學(xué)改進(jìn)。
2.1教學(xué)方法改進(jìn)
教師對學(xué)生具有引領(lǐng)作用,其教學(xué)方法的改進(jìn)能夠帶動學(xué)生改進(jìn)自身學(xué)習(xí)方法。(1)啟發(fā)式案例教學(xué)案例教學(xué)法就是教師根據(jù)教學(xué)目標(biāo)、教學(xué)內(nèi)容以及教學(xué)要求,通過安排一些具體的教學(xué)案例,引導(dǎo)學(xué)生積極參與案例思考、分析、討論和表達(dá)等多項活動,是一種培養(yǎng)學(xué)生認(rèn)知問題、分析和解決問題等綜合能力的行之有效的教學(xué)方法。啟發(fā)式案例教學(xué)以自主、合作、探究為主要特征,調(diào)動學(xué)生的學(xué)習(xí)積極性,并緊密結(jié)合人工智能領(lǐng)域的相關(guān)理論與方法,有效理解知識要點及其關(guān)聯(lián)性,適用于管理類專業(yè)學(xué)生的教學(xué)。具體而言,高校基于其問題啟發(fā)性、教學(xué)互動性以及實踐有用性等特點,可以建立基于人工智能知識體系的教學(xué)案例庫,雖然這項建設(shè)將極具挑戰(zhàn)性與耗時性,但具有很強(qiáng)的積極效果:培養(yǎng)學(xué)生較強(qiáng)的批判性思維能力,更多地保留課程材料,更積極地參與課堂活動,對提高教學(xué)質(zhì)量、培養(yǎng)具有人工智能背景的管理類人才具有重要意義。例如,通過單一案例教學(xué),讓學(xué)生掌握相關(guān)基礎(chǔ)知識原理及應(yīng)用;通過一題多解的案例使學(xué)生思考如何獲取最有效的解題方法;通過綜合案例的設(shè)計,啟發(fā)學(xué)生全方位地探索問題的解決方案。(2)研討互動式教學(xué)研討互動式的各個教學(xué)環(huán)節(jié)是逐漸遞進(jìn)、有機(jī)結(jié)合的。研討是基于學(xué)生個體的差異性,在課堂討論的過程中對學(xué)生做出評判,從而對不同類型的學(xué)生開展針對性的教學(xué)。互動則是在研討的基礎(chǔ)上,通過老師與學(xué)生、學(xué)生與學(xué)生的互動,讓學(xué)生主動參與到課堂教學(xué)的過程中來。在人工智能課程教學(xué)過程中,教師通過課堂討論了解學(xué)生對于知識點的掌握情況,可以有針對性地設(shè)計教學(xué)內(nèi)容,例如,對于學(xué)校積極性不強(qiáng)的學(xué)生,將人工智能理論內(nèi)容與學(xué)生個人興趣范疇、社會產(chǎn)業(yè)發(fā)展及研究現(xiàn)狀聯(lián)系起來,能夠極大程度地提高學(xué)生學(xué)習(xí)的自主能力;對于基礎(chǔ)知識較為薄弱的學(xué)生,可以在教師的指導(dǎo)下查閱相關(guān)文獻(xiàn)資料,根據(jù)自己的理解撰寫心得報告,并在課堂或課外進(jìn)行師生互動。像這樣研討與互動相結(jié)合的模式。有助于增強(qiáng)學(xué)生的探索和求知欲望,建立起濃厚的學(xué)習(xí)氛圍。(3)有效激勵式教學(xué)人工智能是引領(lǐng)未來的戰(zhàn)略性技術(shù),人才需求量極大,對教師的教學(xué)水平也提出了更高要求,因此,進(jìn)行有效激勵極為重要。在學(xué)生激勵方面,可以舉辦各類人工智能競賽項目,設(shè)置相應(yīng)項目獎學(xué)金,吸引學(xué)生參與實踐,調(diào)動學(xué)生做研究、發(fā)論文的積極性。例如,教育部主辦的中國研究生人工智能創(chuàng)新大賽,圍繞新一代人工智能創(chuàng)新主題,激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的創(chuàng)新實踐能力,為人工智能領(lǐng)域健康發(fā)展提供人才支撐。高校也可以借鑒這種模式,在各學(xué)院乃至全校開展此類競賽項目,激發(fā)學(xué)生的創(chuàng)新能力與團(tuán)隊合作能力,鼓舞更多學(xué)生加入到人工智能課程的學(xué)習(xí)中來,激發(fā)其學(xué)習(xí)興趣。在教師激勵方面,在教師聘任和提升過程中把參加學(xué)生課程制定、課堂與課外作業(yè)、課程項目和論文指導(dǎo)等看作教學(xué)任務(wù)的一部分,鼓勵教師積極參與這些活動。(4)學(xué)科滲透式教學(xué)人工智能學(xué)科知識融合程度較高,學(xué)科交叉性強(qiáng)。基于人工智能的學(xué)科交叉性特點,增強(qiáng)管理類人才對學(xué)科應(yīng)用的領(lǐng)悟,可以采取開展學(xué)科滲透式教學(xué)的方法。從2015年起,國務(wù)院和教育部先后印發(fā)了《國務(wù)院關(guān)于積極推進(jìn)“互聯(lián)網(wǎng)+”行動的指導(dǎo)意見教育》、《高等學(xué)校人工智能創(chuàng)新行動計劃》等文件,“互聯(lián)網(wǎng)+”、“智能+”已經(jīng)滲透到各個領(lǐng)域,人類進(jìn)入數(shù)字經(jīng)濟(jì)時代,社會需求“技術(shù)+管理”的高端復(fù)合人才。例如,基于工業(yè)4.0和強(qiáng)國戰(zhàn)略,人工智能技術(shù)在智能制造的應(yīng)用極為廣泛。上海理工大學(xué)非常重視少數(shù)民族預(yù)科班的教育質(zhì)量。為增強(qiáng)少數(shù)民族管理類人才對該領(lǐng)域應(yīng)用的認(rèn)識,我們請機(jī)械工程、能源動力領(lǐng)域的相關(guān)專家以授課或講座的形式,進(jìn)行相關(guān)領(lǐng)域知識和發(fā)展趨勢的講解,使學(xué)生理解更為透徹。此外,在教學(xué)實踐過程中,還可以用舉辦人工智能知識交流會、線上人工智能論壇等形式,促進(jìn)不同專業(yè)間老師、學(xué)生對于人工智能知識模塊的見解,相互交流、滲透和學(xué)習(xí),從而推動人工智能課程教學(xué)的改進(jìn)。
2.2教學(xué)內(nèi)容設(shè)置
世界一流大學(xué)在人工智能課程內(nèi)容設(shè)置根據(jù)不同國家的教育體系設(shè)置,肯定會有不同,但頗有共通之處。本文借鑒世界頂尖大學(xué)經(jīng)驗,針對管理類專業(yè)人工智能課程教學(xué)內(nèi)容進(jìn)行研究,結(jié)合中國教育體系設(shè)置,認(rèn)為應(yīng)從以下幾方面進(jìn)行改進(jìn)。(1)核心內(nèi)容設(shè)置為避免學(xué)生因為知識點過多而出現(xiàn)雜而不精的問題,勢必要精化教學(xué)內(nèi)容。在互聯(lián)網(wǎng)時代,我們可以使用云計算和其他方式來實現(xiàn)數(shù)據(jù)信息的傳輸、存儲和處理,通過在線收集和整合網(wǎng)絡(luò)課程相關(guān)數(shù)據(jù),挖掘和豐富教學(xué)資源,并在整合課程資源的基礎(chǔ)上,進(jìn)行研究方法和前沿知識的擴(kuò)展。在核心內(nèi)容設(shè)置方面,可以通過收集到的數(shù)據(jù)資料,選擇人工智能領(lǐng)域具有代表性且難易程度適中的知識作為重點,使學(xué)生能夠在有限的學(xué)時內(nèi)掌握人工智能的知識脈絡(luò)。例如,編寫針對管理類人才的人工智能教材,內(nèi)容涉及緒論、知識表示與推理、常用算法、機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等方面的同時,重點增加相應(yīng)知識點在管理上的應(yīng)用案例,加強(qiáng)學(xué)生對知識點的理解。同時,根據(jù)管理類專業(yè)偏向領(lǐng)域,開設(shè)關(guān)聯(lián)程度較大、應(yīng)用較廣泛的人工智能選修課程,以便學(xué)生根據(jù)自己的興趣與需求選修具體方向的課程。(2)注重學(xué)生的數(shù)理及編程基礎(chǔ)良好的數(shù)理及編程基礎(chǔ)是學(xué)習(xí)人工智能的前提。只有具備了這些基礎(chǔ),才能搞清楚人工智能模型的數(shù)量關(guān)系、空間形式和優(yōu)化過程等,才能將數(shù)學(xué)語言轉(zhuǎn)化為程序語言,并應(yīng)用于實驗。管理學(xué)院人才的數(shù)理及編程基礎(chǔ)相對薄弱,因此,在安排學(xué)生學(xué)習(xí)人工智能課程之前,建議開設(shè)面向全體管理類專業(yè)學(xué)生的微積分、線性代數(shù)、概率論等專業(yè)基礎(chǔ)數(shù)學(xué)課程以及C語言、python等編程基礎(chǔ)課程,使學(xué)生具備數(shù)學(xué)分析的基礎(chǔ)與一定編程基礎(chǔ),為學(xué)習(xí)人工智能課程打下堅實的基礎(chǔ)。另外,可以推進(jìn)MOOC平臺建設(shè),在平臺上開設(shè)人工智能網(wǎng)絡(luò)課程,幫助學(xué)生掌握人工智能知識基礎(chǔ)及專業(yè)技能。(3)實驗建設(shè)為了加強(qiáng)學(xué)生對于人工智能知識點間的關(guān)聯(lián)性理解,可以基于不同的應(yīng)用模塊,設(shè)計具有前后鋪墊、上下關(guān)聯(lián)的綜合性實驗,設(shè)計不同層次的項目要求,同時基于相同的實驗課題,讓學(xué)生分組對實驗課題進(jìn)行攻克,并設(shè)置多元化的實驗評價體系,通過實驗教學(xué)過程中反映出的不同進(jìn)度,讓教師能對學(xué)生的學(xué)習(xí)水平做出準(zhǔn)確評判,及時進(jìn)行教學(xué)反思,以便更好地開展下一步工作。例如,針對人工智能課程應(yīng)用中很廣的遺傳算法,在某一管理規(guī)劃的具體應(yīng)用上設(shè)置理解-實現(xiàn)-參數(shù)分析-具體應(yīng)用-嘗試改進(jìn)-深度拓展的不同層次的項目要求,在這些項目層次中規(guī)定必做項與可選項,讓學(xué)生基于同一實驗課題進(jìn)行合作學(xué)習(xí),然后通過個人自我評價、小組成員互相評價以及教師評價的方式進(jìn)行打分,對小組整體能力以及個人能力進(jìn)行綜合評估,以期培養(yǎng)學(xué)生的自主思考能力。
一、網(wǎng)站的構(gòu)建
1.網(wǎng)站框架設(shè)計
我國高中階段人工智能教育還處于起步階段,據(jù)調(diào)查,全國已開設(shè)人工智能課程的中學(xué)不超過十所。事實上,對于人工智能這一前沿學(xué)科,大部分信息技術(shù)教師還缺乏足夠的了解,因此對于該課程的開設(shè)也一直處于觀望狀態(tài)。考慮到人工智能教育的實際情況以及網(wǎng)站的主要對象,我們以高中信息技術(shù)選修課教材《人工智能初步》為基礎(chǔ),按教學(xué)內(nèi)容設(shè)置和劃分欄目,同時又圍繞“學(xué)人工智能、教人工智能、用人工智能、機(jī)器人專題”四大專題進(jìn)行內(nèi)容重組。當(dāng)然,網(wǎng)站的基本架構(gòu)并非一成不變,它需要在實際應(yīng)用中進(jìn)行檢驗與修正,最終實現(xiàn)網(wǎng)站的完美架構(gòu)。依據(jù)上述思路建構(gòu)的網(wǎng)站基本框架如圖1所示。
2.網(wǎng)站的欄目設(shè)計
新聞欄目以圖文的形式人工智能發(fā)展的最新情況,這是激發(fā)并維持廣大師生關(guān)注人工智能的基礎(chǔ),也是師生獲取最新信息的窗口。子欄目“中國動態(tài)”“歐美動態(tài)”等分別介紹了各地區(qū)最新的人工智能信息,尤其是機(jī)器人產(chǎn)品的新聞。子欄目“會議論壇”,“比賽通知”為師生、參與比賽提供服務(wù)。
論文欄目是作為資源型網(wǎng)站的基礎(chǔ)。子欄目“教學(xué)研究”主要面向從事人工智能教育的研究者和教師,探討教學(xué)方法、分析教學(xué)案例、推薦教材和參考書,為更好的開展人工智能教學(xué)提供理論依據(jù)。子欄目“學(xué)習(xí)樂園”主要面向?qū)W生,展示活動實錄、闡述學(xué)習(xí)感受,聆聽專家意見,為更好的學(xué)習(xí)人工智能提供事實參考,教師也通過“學(xué)習(xí)樂園”來了解學(xué)生的所思所感所想。子欄目“賽事規(guī)則”介紹了各個地區(qū)和各級機(jī)器人比賽的一些規(guī)則,有利于師生更好的進(jìn)行人工智能的教與學(xué)。
資源、視頻、圖庫、酷站:這四個欄目是資源型網(wǎng)站的核心。尤其是資源模塊中的子欄目“電子書刊”“教學(xué)課件”“人工智能軟件”分別以不同的文件格式向師生提供教與學(xué)的資源,使其能快速準(zhǔn)確地獲取符合需求的資源,免去了在因特網(wǎng)上盲目搜索出現(xiàn)大量冗余信息的麻煩。網(wǎng)站整合了文本、視頻、圖片等多媒體信息,以豐富多彩的形式呈現(xiàn)資源,增強(qiáng)了網(wǎng)站的吸引力和信息的可閱讀性。
愛問欄目是作為學(xué)習(xí)型網(wǎng)站的基礎(chǔ),也是本網(wǎng)站的一大特色。“愛問”是采用了模仿“百度知道系統(tǒng)”的程序設(shè)計,更注重知識的答疑解惑。我們將此欄目劃分為“學(xué)人工智能”“教人工智能”“用人工智能”“機(jī)器人問題”四個子欄目,師生可根據(jù)各自的需要進(jìn)行提問、回答問題、搜索問題等操作。同時,設(shè)立了積分制,激發(fā)師生提問和回答問題的熱情。
用戶中心欄目是學(xué)習(xí)型網(wǎng)站的核心。作為一個專題網(wǎng)站,必然要十分強(qiáng)調(diào)學(xué)習(xí)的功能。子欄目“網(wǎng)絡(luò)書簽”的功能可以使學(xué)習(xí)者記錄自己所瀏覽過的或所感興趣的網(wǎng)頁,便于在下次登陸后繼續(xù)學(xué)習(xí)。在子欄目“信息”功能中,學(xué)習(xí)者可以新聞、論文、資源、愛問等信息,待管理員審核通過后即可在網(wǎng)站中顯示出來。另外,教師也可在教學(xué)過程中通過此模塊要求學(xué)生提交作業(yè),便于教師隨時隨地的批改作業(yè)。
二、網(wǎng)站的訪問數(shù)據(jù)分析
人工智能教育專題網(wǎng)站從開設(shè)至今將近8個月的時間,已經(jīng)有超過1萬的獨立訪客訪問了本站,我們選取了最近訪問的2000位獨立訪客進(jìn)行研究。通過對地域、被檢索方式、受訪頁面及回頭率的分析,可為網(wǎng)站下一步的改進(jìn)與完善提供依據(jù),為其他人工智能教育類網(wǎng)站的建設(shè),在網(wǎng)站的用戶類型,網(wǎng)站的內(nèi)容選擇與更新,網(wǎng)站的推介宣傳等方面提供參考與借鑒。
1.地域分析
在統(tǒng)計到的訪問該網(wǎng)站的地域中,國外共有12個國家訪問了本網(wǎng)站。國內(nèi)除西藏、澳門之外,其他省份、直轄市、特別行政區(qū)都有訪問過本網(wǎng)站,這為我們今后在高中普及人工智能教育提供了有力的依據(jù)。但是,通過圖2的數(shù)據(jù)我們也可看到,各個地區(qū)間的訪問量差距較大,并且訪問量靠前的幾個省份基本上是沿海地區(qū),而中部和西部地區(qū)的訪問量比較少,所以在今后的工作中不僅要加強(qiáng)網(wǎng)站本身的建設(shè)和宣傳,更要把人工智能教育的理念推廣到中部和西部地區(qū),使那里的中小學(xué)師生也接觸人工智能的知識,激發(fā)他們對信息技術(shù)美好前景的向往。
2.被檢索方式分析
搜索引擎是網(wǎng)絡(luò)上最常用的獲取資源的方式。掌握用戶使用搜索引擎的情況,有助于了解網(wǎng)站的被檢索方式。統(tǒng)計搜索關(guān)鍵字的次數(shù),有助于了解網(wǎng)站被檢索訪問的原因。在專題網(wǎng)站建設(shè)完成后,向“百度”、“Google”等大型搜索引擎系統(tǒng)提交收錄網(wǎng)頁申請是極其必要的,它有利于提高網(wǎng)站的知名度和訪問量。而在網(wǎng)站中增加“人工智能”,“prolog 源程序”等文字內(nèi)容,將會有利于用戶在盲目搜索時能訪問到該專題網(wǎng)站。
3.受訪頁面分析
受訪頁面是指用戶訪問該專題網(wǎng)站時所停留的頁面。通過對受訪頁面的統(tǒng)計,使我們能夠掌握用戶相對較為關(guān)注網(wǎng)站的哪些內(nèi)容。表1數(shù)據(jù)中“學(xué)人工智能”占23.82%,“資源下載”占了16.32%,表明用戶對人工智能的知識還不是很了解,對人工智能的認(rèn)識還停留在“學(xué)”的層面,遠(yuǎn)未達(dá)到“教”的程度。人工智能教育類網(wǎng)站在建設(shè)中,如果能提供大量的人工智能的基礎(chǔ)知識以及豐富的可下載資源,將會顯著提高網(wǎng)站的受歡迎度以及用戶的認(rèn)可度。
4.回頭率分析
在網(wǎng)站訪問統(tǒng)計中,通常將距離上次訪問超過12小時的再次訪問記錄為一次回頭。通過對回頭率的統(tǒng)計(表略)看出該專題網(wǎng)站的粘性不是很高,尤其是3次回訪以上的用戶還不多。通過對部分用戶訪談后了解到,網(wǎng)站的更新速度慢,資源較少,內(nèi)容偏難是其不愿進(jìn)行多次回訪的主要原因。所以,人工智能教育類網(wǎng)站在維護(hù)期間要注意內(nèi)容的時效性、豐富性、通俗性才能保證網(wǎng)站訪問的可持續(xù)性。
三、網(wǎng)站建設(shè)的若干思考
目前國內(nèi)外有關(guān)人工智能的專題網(wǎng)站不多,針對人工智能教育的網(wǎng)站更少。在可供借鑒的成熟案例較少、研究又處于剛起步階段的情況下,有必要對我們的工作進(jìn)行反思總結(jié)。通過上述訪問數(shù)據(jù)的分析,以及在人工智能教育專題網(wǎng)站建設(shè)的準(zhǔn)備階段,實施階段及運行階段的實踐,我們認(rèn)為在建設(shè)人工智能教育類網(wǎng)站時應(yīng)當(dāng)注意以下幾個問題。
1. 充分關(guān)注用戶信息
訪問量是綜合類或門戶類網(wǎng)站的生命線,應(yīng)當(dāng)盡可能地拓寬訪問者的類型與層次。但人工智能作為一門新興學(xué)科,其專題網(wǎng)站的學(xué)科性特點甚至比普通的專題學(xué)習(xí)網(wǎng)站還要突出,因此單從訪問量上來說,它是無法和門戶類網(wǎng)站相比的。所以在建設(shè)的初期首先就要考慮的網(wǎng)站的對象問題,也就是要關(guān)注哪類人訪問了網(wǎng)站。只有準(zhǔn)確的掌握了用戶的信息才能更好提供用戶需要的資源。
在這里,人工智能教育專題網(wǎng)站是通過以下三種手段來獲取用戶信息的。
第一,用戶必須注冊才能訪問網(wǎng)站,注冊的內(nèi)容包括年齡、身份、學(xué)歷,電子郵件等內(nèi)容。
第二,在網(wǎng)站中設(shè)立“網(wǎng)站調(diào)查”欄目,可以對“你是如何知道本站的”,“你覺得本站建設(shè)的如何”等內(nèi)容教學(xué)在線調(diào)查。
第三,通過“中國站長站”等專業(yè)的數(shù)據(jù)收集程序來獲取用戶基本信息,可收集到用戶地域、受訪問頁面、用戶回頭率等信息。只有掌握了準(zhǔn)確的用戶信息,才能更好的為用戶提供服務(wù)。
2.與用戶攜手共建網(wǎng)上資源
人工智能的子學(xué)科門類眾多,僅高中教材《人工智能初步》中就有知識及其表達(dá)、推理與專家系統(tǒng)、人工智能語言與問題求解等多個主題。而且我國的人工智能研究相對薄弱,很多資料都是外文的。任何一個人要很熟練的掌握人工智能的各個內(nèi)容是很困難也是不現(xiàn)實的。我們通過一年多的實踐也體會到,僅僅依靠課題組成員很難保證網(wǎng)站資源庫內(nèi)容的全面性和針對性。所以在網(wǎng)站最新一次改版中,我們增加了用戶的信息功能,使得用戶自己可以新聞、添加文章,上傳資源,只要經(jīng)過管理員審核即可在網(wǎng)站中顯示。
另外,在人工智能教學(xué)過程中,我們也充分利用學(xué)生的優(yōu)勢,要求學(xué)生以作業(yè)的形式提交文本和視頻資源,并將作業(yè)的數(shù)量和質(zhì)量作為考察學(xué)生學(xué)習(xí)效果的一個指標(biāo)。這些舉措保證了網(wǎng)站內(nèi)容更新的時效性和內(nèi)容的針對性。用戶所的就是用戶所關(guān)注的,用戶所關(guān)注的就是網(wǎng)站所要收集的。
3.通過多種形式充分發(fā)揮網(wǎng)站作用
目前,全國高中開設(shè)了“人工智能初步”選修課的學(xué)校極少,教師手頭上可供選擇的教材也只有5套。從專題網(wǎng)站上統(tǒng)計的數(shù)據(jù)來看,雖然網(wǎng)站目前的用戶主要是教師,但“學(xué)人工智能”頁面訪問量卻遠(yuǎn)多于“教人工智能”。從這些情況看,單靠幾個人工智能教育類的專題網(wǎng)站無法從根本上解決高中人工智能教育現(xiàn)階段所面臨的窘境。所以,在條件允許的情況下,可以通過研修班、會議論壇等形式組織教師進(jìn)行面對面的交流。
例如,我們就在2007年5月25日至27日在浙江師范大學(xué)舉辦了全國首屆“高中人工智能課程研修班”,來自全國十個省市的70余位信息技術(shù)教師及教研員參加了研修班的學(xué)習(xí)。在研修活動中,教師不僅學(xué)習(xí)了人工智能的知識,也對人工智能教育的現(xiàn)狀及發(fā)展過程中遇到的問題做了充分了探討和交流。本次研修活動結(jié)束后,人工智能教育專題網(wǎng)站則成了學(xué)員們交換信息、交流體會、共享資源的有效平臺。
四、結(jié)束語
總之,借助專題網(wǎng)站的平臺作用開展各種活動,不僅彌補(bǔ)了人工智能教育網(wǎng)站缺乏面對面交流和互動的缺點,也為把網(wǎng)站資源建設(shè)的更具針對性提供了有效幫助。
參考文獻(xiàn):
[1]張劍平. 關(guān)于人工智能教育的思考[J] .電化教育研究.2003,(1).
[2]曹瑞敏. “中國海”學(xué)生專題學(xué)習(xí)網(wǎng)站應(yīng)用[J] .中國電化教育.2005,(5).
關(guān)鍵詞:人工智能;教育;新模式;改革;構(gòu)想
教育是著眼于未來的事業(yè),教育的首要任務(wù)就是為未來社會培養(yǎng)相適應(yīng)的合格人才。隨著人工智能的誕生和發(fā)展,我國已經(jīng)開始將人工智能應(yīng)用于教育領(lǐng)域,并顯示出人工智能對于彌補(bǔ)當(dāng)前教育存在的種種缺陷和不足,推動教學(xué)現(xiàn)代化和教育發(fā)展改革進(jìn)程起著越來越重要的作用。在現(xiàn)代醫(yī)學(xué)發(fā)展中,工程科學(xué)與臨床醫(yī)學(xué)不斷融合,相互進(jìn)步。近幾年,隨著人工智能技術(shù),機(jī)器人技術(shù),虛擬與增強(qiáng)現(xiàn)實技術(shù),3D打印技術(shù)與醫(yī)學(xué)不斷的融合發(fā)展,衍生出一系列的醫(yī)學(xué)診療技術(shù),儀器,大大推進(jìn)了醫(yī)學(xué)發(fā)展。從2013年到2017年,國務(wù)院、發(fā)改委、FAD連續(xù)發(fā)文,多次提及醫(yī)療走智能化、云化的趨勢,為推動智能醫(yī)療領(lǐng)域保駕護(hù)航。智能與醫(yī)學(xué)的結(jié)合已經(jīng)是大勢所趨,因此,為培養(yǎng)大量智能醫(yī)學(xué)人才極有必要對智能醫(yī)學(xué)教育新模式進(jìn)行深入研究。
一、目前醫(yī)學(xué)教育以及醫(yī)學(xué)人才培養(yǎng)狀況
智能醫(yī)學(xué)工程是一門將人工智能、傳感技術(shù)等高科技手段綜合運用于醫(yī)學(xué)領(lǐng)域的新興交叉學(xué)科,研究內(nèi)容包括智能藥物研發(fā)、醫(yī)療機(jī)器人、智能診療、智能影像識別、智能健康數(shù)據(jù)管理等。
智能醫(yī)學(xué)工程的畢業(yè)生掌握了基礎(chǔ)醫(yī)學(xué)、臨床醫(yī)學(xué)的基礎(chǔ)理論,對智慧醫(yī)院、區(qū)域醫(yī)療中心、家庭自助健康監(jiān)護(hù)三級網(wǎng)絡(luò)中的醫(yī)學(xué)現(xiàn)象、醫(yī)學(xué)問題和醫(yī)療模式有較深入的理解,能熟練地將電子技術(shù)、計算機(jī)技術(shù)、網(wǎng)絡(luò)技術(shù)、人工智能技術(shù),應(yīng)用于醫(yī)療信息大數(shù)據(jù)的智能采集、智能分析、智能診療、臨床實踐等各個環(huán)節(jié)。實驗教學(xué)正是融合型創(chuàng)新人才的最好培養(yǎng)方式。智能醫(yī)學(xué)人才的培養(yǎng)需要各學(xué)科間的相互交融更為緊密,學(xué)生的創(chuàng)新應(yīng)用能力才能得到更好的培養(yǎng)。與此同時,由于絕大部分醫(yī)工結(jié)合的專業(yè)大部分歸屬與工科學(xué)院下,缺乏必要的臨床經(jīng)驗,因而學(xué)生不能很好的把握新技術(shù)的應(yīng)用。
而國內(nèi)相關(guān)人才缺口還非常大,目前,國內(nèi)僅僅有生物醫(yī)學(xué)工程、醫(yī)學(xué)信息工程等工科專業(yè)培養(yǎng)醫(yī)工結(jié)合人才。但是囿于培養(yǎng)時間與培養(yǎng)模式,他們往往只能針對具體某一方向,并且目前的培養(yǎng)體系還多著重于工學(xué)技術(shù)的研究,缺乏臨床實踐。
二、智能+醫(yī)學(xué)教育的必要性探究
2.1技術(shù)進(jìn)步對醫(yī)療人員的診療幫助
以癌癥的治療為例,由于針對癌癥藥物的研究何藥物數(shù)量非常巨大,對于普通醫(yī)生在短時間內(nèi)難以進(jìn)行準(zhǔn)確的判斷針對癌癥的研究和藥物數(shù)量非常巨大,具體來說,目前已有800多種藥物和疫苗用于治療癌癥。但是,這對于醫(yī)生來說卻有負(fù)面的影響,因為有太多種選擇可供選擇,使得為病人選擇合適的抗癌藥物變的更加困難。同樣,精確醫(yī)學(xué)的進(jìn)步也是非常困難的,因為基因規(guī)模的知識和推理成為決定癌癥和其他復(fù)雜疾病的最終瓶頸。今天,許多受過專業(yè)訓(xùn)練的醫(yī)學(xué)研究員需要數(shù)小時的時間來檢查一個病人的基因組數(shù)據(jù)并作出治療決定。
上述問題在擁有工學(xué)、醫(yī)學(xué)雙背景的醫(yī)生手中已經(jīng)不是問題,通過目前日漸成熟的AI技術(shù),對于大量的醫(yī)療數(shù)據(jù)進(jìn)行檢索,通過可靠的編程手段,通過人工智能技術(shù),建立完備的醫(yī)療數(shù)據(jù)庫,幫助醫(yī)生進(jìn)行診療。據(jù)調(diào)查,美國微軟公司已經(jīng)研制出幫助醫(yī)生治療癌癥的人工智能機(jī)器,其原理是對于所有關(guān)于癌癥的論文進(jìn)行檢索,并提出對于病人治療最有效的參考方案,它可以通過機(jī)器學(xué)習(xí)來幫助醫(yī)生找到最有效,最個性化的癌癥治療方案,同時提供可視化的研究數(shù)據(jù)。
2.2智能醫(yī)學(xué)對于新時代醫(yī)生培養(yǎng)的影響
人工智能通過計算機(jī)可為學(xué)生提供圖文并茂的豐富信息和數(shù)據(jù),一方面加強(qiáng)了學(xué)生的感性認(rèn)識,加強(qiáng)了對所學(xué)知識的理解和掌握,從而提高了教學(xué)質(zhì)量。同時,人工智能可幫助教師完成繁雜的、需適應(yīng)各種教學(xué)的教學(xué)課程、課件等設(shè)計,使教師將更多的精力專注于學(xué)與教的行為和過程,從而提高教學(xué)效率。正如前面所述例子,智能網(wǎng)絡(luò)模塊化學(xué)習(xí)平臺可使教學(xué)擺脫以往對于示教病例的依賴,拓展了學(xué)生們的學(xué)習(xí)空間和時間,可極大地提高醫(yī)學(xué)學(xué)習(xí)效率和教學(xué)質(zhì)量。
教育與人工智能相結(jié)合將會創(chuàng)新教育方式和理念。北京師范大學(xué)何克抗教授在《當(dāng)代教育技術(shù)的研究內(nèi)容與發(fā)展趨勢》中提到當(dāng)代教育技術(shù)的五大發(fā)展趨勢之一就是“愈來愈重視人工智能在教育中應(yīng)用的研究”。結(jié)合上述人工結(jié)合上述人工智能在醫(yī)學(xué)教育中的創(chuàng)新作用,下面就人工智能結(jié)合醫(yī)學(xué)學(xué)教育新模式提出一些構(gòu)想。
三、交叉醫(yī)學(xué)人才的培養(yǎng)
3.1建立智能醫(yī)學(xué)人才培養(yǎng)體系的必要性
目前智能醫(yī)學(xué)的研發(fā)和臨床還存在隔閡,臨床醫(yī)生并沒有很好地理解人工智能,無法從實踐出發(fā)提出人工智能能夠解決的方向,而人工智能的產(chǎn)業(yè)界熱情高漲,卻未必能踩準(zhǔn)點,所以產(chǎn)業(yè)界需要和臨床深度溝通融合,才能真正解決看病難、看病貴的問題,緩解醫(yī)療資源緊張。目前,國內(nèi)僅僅有生物醫(yī)學(xué)工程、醫(yī)學(xué)信息工程等工科專業(yè)培養(yǎng)醫(yī)工結(jié)合人才。
3.2醫(yī)學(xué)人才培養(yǎng)體系初步構(gòu)想
據(jù)悉,目前已經(jīng)有天津大學(xué)、南開大學(xué)等幾所院校開設(shè)了智能方向的醫(yī)學(xué)本科教育,旨在彌補(bǔ)上述缺口,相關(guān)院校也在積極探索新型人才培養(yǎng)方案。應(yīng)當(dāng)為醫(yī)學(xué)生開設(shè)人工智能課程,應(yīng)當(dāng)培養(yǎng)具備生命科學(xué)、電子技術(shù)、計算機(jī)技術(shù)及信息科學(xué)有關(guān)的基礎(chǔ)理論知識以及醫(yī)學(xué)與工程技術(shù)相結(jié)合的科學(xué)研究能力。該專業(yè)的學(xué)生主要學(xué)習(xí)生命科學(xué)、臨床醫(yī)學(xué),電子技術(shù)、計算機(jī)技術(shù)和信息科學(xué)的基本理論和基本知識,充分進(jìn)行計算機(jī)技術(shù)在醫(yī)學(xué)中的應(yīng)用的訓(xùn)練,具有智能醫(yī)學(xué)工程領(lǐng)域中的研究和開發(fā)的基本能力。
人工智能技術(shù)及其應(yīng)用的發(fā)展歷史雖然只有短短的50余年,但是它作為信息技術(shù)的前沿領(lǐng)域,對社會經(jīng)濟(jì)和發(fā)展的影響卻越來越大。在基礎(chǔ)教育課程改革的大潮中,許多國家意識到基礎(chǔ)教育領(lǐng)域開展人工智能教育的必要性,努力把人工智能列入技術(shù)類教育的教學(xué)內(nèi)容中。作為師范類院校,教授人工智能課是有必要的。?
(1)為部分優(yōu)秀的學(xué)生將來做更深入的研究打堅實的基礎(chǔ)。在面向知識經(jīng)濟(jì)的今天,研究獲取、表示和使用知識的人工智能學(xué)科越來越受到人們的重視。目前人工智能研究被列為中國高技術(shù)領(lǐng)域的重點之一。以專家系統(tǒng)為代表的智能化系統(tǒng)在信息技術(shù)中也占有重要地位。因此在高等教育中開展人工智能教育和智能化系統(tǒng)的研發(fā),不僅是計算機(jī)科學(xué)的應(yīng)用,也是促進(jìn)各學(xué)科服務(wù)于國民經(jīng)濟(jì)發(fā)展的必然趨勢。為使人工智能的理論、方法和技術(shù)的研究與應(yīng)用普及和深入,教育重心必須要下移,即從研究生教育向本科教育普及。開展本科層次人工智能普及教育的有效途徑之一是在本科高年級開設(shè)相關(guān)選修課。開展人工智能教育,不僅能夠更好地發(fā)揮高等院校的育人和科學(xué)研究功能,而且能為學(xué)生拓寬專業(yè)路徑,擴(kuò)大自主學(xué)習(xí)空間和發(fā)展個性創(chuàng)造條件,同時也為營造一個使學(xué)生不僅有寬厚、扎實的理論基礎(chǔ),且具綜合分析和解決問題能力的環(huán)境。?
(2)為將來從教的學(xué)生積聚大量的知識。英國早在1999年,人工智能課程已經(jīng)作為選修課出現(xiàn)在中學(xué)的信息與通訊技術(shù)(ICT)課程中。許多中小學(xué)還通過機(jī)器人競賽活動來激發(fā)中小學(xué)生學(xué)習(xí)人工智能的興趣,使學(xué)生不僅提高了用信息技術(shù)解決問題的能力,而且培養(yǎng)了多種思維方式,獲得了更多的創(chuàng)新空間。美國現(xiàn)行的中學(xué)信息技術(shù)課程設(shè)置中,將人工智能的內(nèi)容作為“媒體與技術(shù)”層面對12年級學(xué)生的要求。澳大利亞的部分中學(xué)開設(shè)的信息處理與技術(shù)課程,人工智能、信息系統(tǒng)、算法和程序設(shè)計、社會和倫理道德、計算機(jī)系統(tǒng)分別作為5個主題共同構(gòu)成了該課程的教學(xué)內(nèi)容。在該課程的大綱中規(guī)定,人工智能部分的教學(xué)內(nèi)容在高中第3學(xué)期為12年級的學(xué)生開設(shè),教學(xué)時間為10周。?
在我國,多年以來中學(xué)奧林匹克信息學(xué)競賽中一直包含有人工智能相關(guān)的題目,涉及啟發(fā)式搜索、博弈、智能程序設(shè)計等問題。2003年4月,我國教育部正式頒布《普通高中技術(shù)課程標(biāo)準(zhǔn)(實驗)》,首次在信息技術(shù)科目中設(shè)立了“人工智能初步”選修模塊,標(biāo)志著我國高中人工智能課程的正式起步。?
我國的新課程標(biāo)準(zhǔn)頒布后,教育部評審并通過了分別由教育科學(xué)出版社、廣東高教出版社、地圖出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并開發(fā)了相應(yīng)的教輔材料,包括教師用書和配套光盤等。為了配合中學(xué)人工智能課程的實施,國內(nèi)也推出了一些適合中學(xué)生學(xué)習(xí)與體驗的人工智能軟件和網(wǎng)絡(luò)資源。另一方面,一些高校的本科生、研究生也逐步關(guān)注中學(xué)人工智能教育的開展并將其作為畢業(yè)論文的研究選題。一些師范院校適應(yīng)形勢要求,已為師范生開設(shè)了與此相關(guān)的選修課程。?
2 人工智能的教育及教學(xué)條件現(xiàn)狀?
通過對本人多年的教學(xué)過程進(jìn)行總結(jié),我校的《人工智能》課程教育現(xiàn)狀可總結(jié)為如下幾點:?
(1)理論知識充裕。但與實踐相脫節(jié),特別是在智能科學(xué)技術(shù)的教育教學(xué)方面。盡管知識面相當(dāng)廣泛,而人工智能理論的普及教育以及智能技術(shù)的開發(fā)與應(yīng)用仍然十分滯后。?
(2)同其它普通高等院校一樣,在本校,人工智能技術(shù)的研究與應(yīng)用尚未普及,甚至比不上其它院校。這不利于培養(yǎng)學(xué)生的科研興趣及創(chuàng)造精神。?
(3)缺乏配套實驗教材,實驗教學(xué)內(nèi)容缺乏,無法培養(yǎng)學(xué)生的研究能力和創(chuàng)新能力。只有開設(shè)實驗項目,才能使人工智能的相關(guān)知識具有研究性和綜合性。?
(4)對中小學(xué)智能教育的深度及教學(xué)方式、教學(xué)特點缺乏研究。做為師范類院校,我認(rèn)為在對學(xué)生進(jìn)行基礎(chǔ)知識教育的基礎(chǔ)上,要緊抓中小學(xué)智能教育的特點對師范類學(xué)生進(jìn)行相關(guān)的教育與培訓(xùn)。?
相對于教育現(xiàn)狀,我校的《人工智能》課程教學(xué)條件現(xiàn)狀要稍好一些,其狀態(tài)如下:?
(1)教材使用國家級規(guī)劃教材,此教材非常系統(tǒng)地介紹了人工智能的基本原理、方法和應(yīng)用技術(shù),適合本科及研究生使用。在我們的授課過程中,也會適當(dāng)為學(xué)生提供相關(guān)的國內(nèi)其他先進(jìn)教材,如中南大學(xué)蔡自興教授的《人工智能及其應(yīng)用》等。?
(2)為了促進(jìn)學(xué)生自主學(xué)習(xí),我們準(zhǔn)備了多種類型的擴(kuò)充性學(xué)習(xí)資料,加強(qiáng)學(xué)生主動學(xué)習(xí)的意識,包括:課程相關(guān)雜志和書籍目錄,以及部分重要的參考文獻(xiàn),與人工智能相關(guān)的網(wǎng)絡(luò)資源如優(yōu)秀BBS、新聞組、網(wǎng)址等。 它們包括了大量的文獻(xiàn)資料、本領(lǐng)域研究的前沿動態(tài)等。 使用表明,學(xué)生非常樂于查閱這些資源。 使學(xué)生能通過使用這些資源進(jìn)行一些人工智能程序設(shè)計,探討一些問題,在課堂討論中展示他們的收獲。?
(3)校園網(wǎng)的普及與不斷優(yōu)化使本課程有優(yōu)良的實踐性教學(xué)環(huán)境,能充分滿足教學(xué)需要。我們擁有較充足的多媒體教室和網(wǎng)絡(luò)教室,為實現(xiàn)本課程教學(xué)提供了物質(zhì)保障。在網(wǎng)絡(luò)資源建設(shè)方面,全校辦公室、教室、學(xué)生宿舍和教師宿舍都以寬帶網(wǎng)相連,這些硬件設(shè)備對本課程教學(xué)發(fā)揮了重要作用,使本課程教學(xué)質(zhì)量得以明顯提高。?
3 人工智能教學(xué)方法及手段的改革?
針對我們現(xiàn)在所采取的教學(xué)方法,我認(rèn)為存在許多不足,如教學(xué)方式比較單一,教學(xué)內(nèi)容偏重理論講解等,為此,提出以下教學(xué)方法的改革:?
(1)通過多種途徑激發(fā)學(xué)生的學(xué)習(xí)興趣。課程的學(xué)習(xí)效果,直接受到學(xué)生興趣和參與意識的影響。一般來講,《人工智能》作為一門前沿課程,開始學(xué)生學(xué)習(xí)興趣很大,當(dāng)開始接觸到抽象理論知識及部分算法時,學(xué)生往往感到不易接受。 我們通過各種途徑和方法, 激發(fā)和培養(yǎng)學(xué)生的學(xué)習(xí)興趣,包括鼓勵學(xué)生參與某部分知識的擴(kuò)充性資料查找,預(yù)留一定時間請學(xué)生負(fù)責(zé)對此內(nèi)容進(jìn)行講解,布置學(xué)生對某個基本成型的實驗進(jìn)行糾錯及驗證,降低問題解決的難度。學(xué)生因此產(chǎn)生興趣從而做更深度研究。?
(2)進(jìn)行啟發(fā)式教學(xué)。 我們可以嘗試在教學(xué)過程中不斷提出問題請學(xué)生思考,啟發(fā)學(xué)生求解這些問題,鼓勵學(xué)生提出自己的猜想和解決方案,然后擺出教材中的解決方案,并與同學(xué)所提出的觀點進(jìn)行分析和比較,這足以加強(qiáng)學(xué)生學(xué)習(xí)的主動意識和參與意識,提高學(xué)生學(xué)習(xí)的積極性。?
(3)課堂辯論與交互式教學(xué)。 組織課堂辯論,討論的議題可定位為譬如人工智能是否能超過人類智能等有爭議的問題。學(xué)生通過對這些問題展開激烈爭論,激發(fā)了學(xué)習(xí)潛能,明確了學(xué)習(xí)目標(biāo)。當(dāng)然師生間的交流方式還有很多,如郵件互發(fā)、QQ留言等,也可在課程網(wǎng)站中的互動平臺進(jìn)行交流。?
(4)分層次因材施教。 在授課過程中,通過對每個具體學(xué)生的學(xué)習(xí)進(jìn)度、課堂作業(yè)情況進(jìn)行及時評估,對學(xué)生提出進(jìn)一步的學(xué)習(xí)建議和指導(dǎo), 實現(xiàn)個性化的教學(xué)。 對優(yōu)秀學(xué)生探討,可以在教學(xué)設(shè)計和實驗設(shè)計中要求其選作部分探索性、創(chuàng)新性的功課和實驗,以發(fā)揮學(xué)生個性優(yōu)勢。對于有意于將來從事中小學(xué)教育的學(xué)生可以在機(jī)器人及人工智能技術(shù)發(fā)展現(xiàn)狀等知識層面對其做問題講解。而那些看似缺乏興趣的學(xué)生,我們可以用多媒體手段如播放人工智能相關(guān)電影及科學(xué)小片引起其興趣,實行逐步引導(dǎo)的教學(xué)過程。?
另外,我們可以嘗試雙語教學(xué)。 采用中文教材和講授的同時,注重在課程中的關(guān)鍵詞同時用英文表示,并適當(dāng)指定英文參考短文和英文參考書。使學(xué)生能夠接觸國外文獻(xiàn)資料,加深對學(xué)習(xí)內(nèi)容的理解,獲得更寬廣的知識。我們也可以在教學(xué)內(nèi)容安排上,注重理論聯(lián)系實際,將一些人工智能網(wǎng)絡(luò)上的虛擬實驗給學(xué)生進(jìn)行課外上網(wǎng)練習(xí),從而使學(xué)生了解算法的具體運行過程, 通過參與達(dá)到知識的理解,掌握基本方法和技術(shù)。?
根據(jù)現(xiàn)有的條件,我們在教學(xué)中可以采用多媒體教學(xué)和網(wǎng)絡(luò)課程教學(xué)相結(jié)合的方法,充分利用多媒體的豐富表現(xiàn)形式,利用網(wǎng)絡(luò)課程的交互性、情景化等特點,構(gòu)筑以學(xué)生為主體的《人工智能》課程現(xiàn)代教學(xué)模式。 對于抽象知識,可通過動畫和視頻演示,通過聲音和圖像展示人工智能的歷史、人物和前景,做到學(xué)生直接而深刻地看到知識的內(nèi)涵外延。網(wǎng)絡(luò)課程能較好地實現(xiàn)交互并使學(xué)習(xí)過程情景化,通過網(wǎng)絡(luò)課程的課堂練習(xí)和章節(jié)練習(xí),教師可以評價學(xué)生的學(xué)習(xí)情況,并給學(xué)生提出學(xué)習(xí)建議,從而提高學(xué)生的研究力和創(chuàng)新力。我們也可以給學(xué)生播放中學(xué)《人工智能》課程課堂教學(xué)錄像,以使學(xué)生看到初高中學(xué)生的知識范圍及深度;同時給學(xué)生播放現(xiàn)有的《人工智能》科學(xué)成果,讓學(xué)生看到理論背后的實踐;也可以播放科幻片,激發(fā)學(xué)生想象的翅膀從而有興趣把人工智能作為將來深造的方向。《人工智能》是一門較新的課程,改進(jìn)教學(xué)方法和手段不僅要靠教師,也應(yīng)增加硬件設(shè)備的投入。如果人工智能能采用智能輔助教學(xué)系統(tǒng)或機(jī)器人輔助教學(xué)過程逼真、形象,一目了然,這樣可大大提高學(xué)生的學(xué)習(xí)效率,尤其是提高學(xué)生的觀察判斷能力、發(fā)現(xiàn)問題和解決問題的能力。?
4 人工智能實踐教學(xué)設(shè)計的探討?
我們可以在教學(xué)過程中,適量開設(shè)一些實驗和設(shè)計,提高學(xué)生的動手能力,并加深他們對理論知識的理解,降低理論的抽象度,提升理論的實用性。在近兩年的教學(xué)過程中,我們會適量加入一些人工智能語言的教學(xué)過程。例如,在講解了“野人與傳教士過河”等問題后,我們可以讓學(xué)生使用Visual Prolog或者C ?++?對算法進(jìn)行實現(xiàn);在講解 TSP 問題的遺傳算法解決案例后,指出編碼方案、初始種群大小、進(jìn)化代數(shù)、交叉率變異率等因素對求解結(jié)果的影響,并要求學(xué)生通過實驗的方式來分析、理解這些問題,并提出“尋找更有利的解決方案”等問題。把學(xué)生的興趣激發(fā)后,為解決這些問題,學(xué)生會在課外主動查閱相關(guān)文獻(xiàn)、相互討論以實現(xiàn)他們所設(shè)計的方案,這樣既培養(yǎng)了學(xué)生善于鉆研和勇于創(chuàng)新的精神又提高了學(xué)生的實踐與創(chuàng)新能力。?
參考文獻(xiàn):?
[1] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學(xué)的探討[J].宿州學(xué)院學(xué)報,2008(1).?
[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教學(xué)中的應(yīng)用與探討[J].廣東工業(yè)大學(xué)學(xué)報:社會科學(xué)版,2008(8).?
關(guān)鍵詞:人工智能;研究型實驗教學(xué);民族關(guān)系
人工智能是計算機(jī)科學(xué)的一個分支,是一門研究運用計算機(jī)模擬和延伸人腦功能的綜合性學(xué)科,對它的研究涉及控制論、信息論、系統(tǒng)論、語言學(xué)、神經(jīng)生理學(xué)、數(shù)學(xué)、哲學(xué)等諸多的學(xué)科及領(lǐng)域,是一門綜合性的交叉學(xué)科[1]。
人工智能的研究、應(yīng)用和發(fā)展,在一定程度上代表著信息技術(shù)的發(fā)展方向,同時信息技術(shù)的廣泛應(yīng)用也對人工智能技術(shù)的發(fā)展提出了迫切的需求。今天,人工智能的不少研究領(lǐng)域如自然語言理解、模式識別、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、智能檢索、機(jī)器人技術(shù)、人工神經(jīng)網(wǎng)絡(luò)等都走在了信息技術(shù)的前沿,有許多研究成果已經(jīng)進(jìn)入人們的生活、學(xué)習(xí)和工作中,并對人類的發(fā)展產(chǎn)生了重要影響[2]。
實踐教學(xué)環(huán)節(jié)在大學(xué)教育中是一個非常重要的教學(xué)環(huán)節(jié),是提高人才素質(zhì)與能力的重要途徑。人工智能課程除了具有較強(qiáng)的專業(yè)性之外,還具有突出的實踐性,為了能深入理解和掌握所學(xué)內(nèi)容,必須把講授和實踐結(jié)合起來。本文結(jié)合該課程實驗教學(xué),將研究型教學(xué)的理念引入到實驗教學(xué),并對教學(xué)過程中的經(jīng)驗和問題加以初步的總結(jié)。
1研究型教學(xué)模式背景
研究型教學(xué)是相對于以單向性知識傳授為主的傳統(tǒng)教學(xué)提出的,是指教師以課程內(nèi)容和學(xué)生的學(xué)識積累為基礎(chǔ),引導(dǎo)學(xué)生創(chuàng)造性地運用知識和能力,自主地發(fā)現(xiàn)問題、研究問題和解決問題,在研究中積累知識、培養(yǎng)能力和鍛煉思維的新型教學(xué)模式。研究性教學(xué)是對現(xiàn)有的大學(xué)課堂教學(xué)模式的突破。有利于開發(fā)大學(xué)生的創(chuàng)造潛能,提高學(xué)生適應(yīng)社會需要的創(chuàng)造性和創(chuàng)新能力,充分展現(xiàn)現(xiàn)代大學(xué)培養(yǎng)人才、發(fā)展科學(xué)、服務(wù)社會的三大基本職能[3]。
19世紀(jì)初,德國著名教育家洪堡最早提出了教學(xué)與科研相統(tǒng)一的原則,為研究型教學(xué)模式的發(fā)展奠定了基礎(chǔ)。20世紀(jì)50、60年代,美國著名教育心理學(xué)家布魯納提出了著名的“發(fā)現(xiàn)教學(xué)模式”[4],成為后來探究性學(xué)習(xí)和研究型教學(xué)的先導(dǎo)。20世紀(jì)70年代,美國研究教學(xué)專家薩奇曼正式提出了研究訓(xùn)練教學(xué)模式。他認(rèn)為學(xué)生會本能地對周圍新奇事物發(fā)生興趣,并想方設(shè)法弄清這些新奇事物背后究竟發(fā)生了什么,這是一種進(jìn)行科學(xué)研究的可貴的動力。
自此,研究型教學(xué)理念開始廣泛使用。現(xiàn)在,哈佛大學(xué)、牛津大學(xué)、劍橋大學(xué)等世界著名大學(xué),都非常注重學(xué)生能力的培養(yǎng),普遍采取了研究型教學(xué)模式。以美國高校為例,雖然美國高校83%的教師在課堂教學(xué)中主要采用講授法進(jìn)行教學(xué),但在整個教學(xué)過程中都滲透著研究型教學(xué)的方法,如積極引導(dǎo)學(xué)生參與教學(xué)過程,開設(shè)研究性課程,引導(dǎo)學(xué)生積極主動地參與科研活動等。我國自20世紀(jì)90年代初推出211工程建設(shè)以來,清華大學(xué)、北京大學(xué)、人民大學(xué)、復(fù)旦大學(xué)、浙江大學(xué)等一些重點大學(xué)都提出了建設(shè)世界一流的綜合性研究型大學(xué)的目標(biāo)。這些高校在實現(xiàn)從單向知識傳授的傳統(tǒng)型教學(xué)向關(guān)注創(chuàng)新性教育的研究型教學(xué)轉(zhuǎn)變方面進(jìn)行了許多有益的嘗試。
2研究型實驗教學(xué)
本科教學(xué)不僅要培養(yǎng)學(xué)生的應(yīng)用能力,還要培養(yǎng)學(xué)生具備基本的科研素質(zhì)。大學(xué)是培養(yǎng)未來一線創(chuàng)新人才的主要基地,必須從本科教學(xué)人手,深入探索研究型教學(xué)的手段和方法,才能滿足未來經(jīng)濟(jì)增長和社會發(fā)展的需要,才能符合建設(shè)研究型大學(xué)的需要。特別是近幾年來我國對科研的投入不斷增加,研究生招生規(guī)模逐年增大,本科高年級學(xué)生打算繼續(xù)讀研的也不在少數(shù)。而人工智能是計算機(jī)相關(guān)學(xué)科非常活躍的研究課題,其涵蓋的分支非常廣泛,如模式識別、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、計算智能、統(tǒng)計學(xué)習(xí)理論等,都是目前國際和國內(nèi)熱門的研究方向。
人工智能課程在計算機(jī)專業(yè)人才培養(yǎng)方案中占據(jù)著重要的位置。在專業(yè)理論方面,它承續(xù)了離散數(shù)學(xué)中的邏輯知識;在專業(yè)方法方面,是數(shù)據(jù)結(jié)構(gòu)、算法分析與設(shè)計的繼續(xù);在專業(yè)工具方面,是面向?qū)ο蟪绦蛟O(shè)計的生動實例。并且人工智能的每一部分內(nèi)容都可以作為一個深入的研究課題,課堂上講解的內(nèi)容不可能面面俱到,學(xué)生們也不可能對人工智能的每一領(lǐng)域都做很深入的學(xué)習(xí)。并且人工智能涉及很多的數(shù)理邏輯知識,有些顯得難以理解,并且往往讓學(xué)生感到比較枯燥,學(xué)生的學(xué)習(xí)興趣就漸漸淡薄,學(xué)生往往被動“聽講”,難以獲得預(yù)期的教學(xué)效果。
針對這一特點,在人工智能教學(xué)中,如何引導(dǎo)學(xué)生系統(tǒng)學(xué)習(xí)人工智能的知識、激發(fā)學(xué)生的研究興趣,樹立目標(biāo)意識找準(zhǔn)研究方向,為未來的科研工作打下基礎(chǔ),研究型實驗教學(xué)就成為了人工智能課程教學(xué)的一個重要環(huán)節(jié)和必然選擇。
2.1實驗教學(xué)中加強(qiáng)學(xué)生的研究導(dǎo)向
在實驗教學(xué)中,如果照搬一些教材中的例子或習(xí)題教學(xué),一方面學(xué)生們會缺乏興趣,另一方面學(xué)生對這個領(lǐng)域的知識缺乏全面的了解。應(yīng)不斷提出一些學(xué)生們感興趣的開放性課題,比如基于支持向量機(jī)的人臉識別、基于膚色的人臉檢測,基于內(nèi)容的圖像檢索等,培養(yǎng)學(xué)生們的學(xué)習(xí)興趣,讓學(xué)生們逐漸深入的學(xué)習(xí)某一領(lǐng)域的知識。比如BP神經(jīng)網(wǎng)絡(luò),在模式識別、經(jīng)濟(jì)數(shù)據(jù)分析、生物信息學(xué)、數(shù)據(jù)挖掘等眾多領(lǐng)域都取得過成功應(yīng)用,是一種具有強(qiáng)大的非線性學(xué)習(xí)能力的計算智能技術(shù)。然而BP神經(jīng)網(wǎng)絡(luò)算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等,而支持向量機(jī)在這些方面具有顯著優(yōu)點。我們可以設(shè)計一個人臉識別的實驗,用神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)分別實現(xiàn),并作以比較。讓學(xué)生們在了解人工智能新技術(shù)的同時,也培養(yǎng)學(xué)生們?nèi)绾畏治鰡栴}、解決問題的科研能力。
2.2人工智能課程實驗
該課程是一門對實驗技術(shù)有較高要求的課程,對于基本原理和方法的實現(xiàn),要求學(xué)生進(jìn)行嚴(yán)格的計算機(jī)專業(yè)技能訓(xùn)練和培養(yǎng)良好的科研工作作風(fēng)。因此對課程中的技能及技術(shù)性內(nèi)容,除單獨進(jìn)行必要的基礎(chǔ)訓(xùn)練外,還融入到綜合和研究型試驗中,通過多次反復(fù)實驗練習(xí),達(dá)到牢固掌握人工智能原理和人工智能的問題求解技術(shù)的目的。
該課程的實踐環(huán)節(jié)主要是實踐項目,由具備較強(qiáng)工程實踐能力的任課教師和助教負(fù)責(zé),學(xué)生可在全天候開放的專用機(jī)房完成。在實踐環(huán)節(jié)的設(shè)計上,我們嘗試把驗證性實驗和開發(fā)性實驗相結(jié)合,結(jié)合實驗教學(xué)進(jìn)度,安排相應(yīng)的開放實驗,開放性實驗以科學(xué)研究實驗為主。并在課程的教學(xué)過程中,不斷深化和擴(kuò)展教學(xué)內(nèi)容,結(jié)合人工智能學(xué)科的發(fā)展趨勢和本院老師的最新研究成果,對實驗內(nèi)容進(jìn)行更新。
課程主要設(shè)置三種層次的實驗:1)基本原理和算法編程,測試?yán)O(shè)計及程序測試實驗;2)分析綜合實驗;3)研究型設(shè)計實驗。整個實驗包括課前討論、實驗操作、實驗報告、結(jié)果討論、總結(jié)提高等六個環(huán)節(jié)。對于綜合性和研究型實驗,把學(xué)生分成5個人一小組,每小組選做其中的一個。學(xué)生從指導(dǎo)老師處了解到實驗課題后,即著手查資料,研讀文獻(xiàn),鉆研有關(guān)理論。在此基礎(chǔ)上,學(xué)生先提出實驗方案,經(jīng)與老師討論后,即可開始實驗研究。
3實驗平臺的構(gòu)建
民族關(guān)系問題對被訪對象,特別對少數(shù)民族被訪對象是非常敏感的問題,對民族關(guān)系的評價又存在個體層面、群體層面、不同階層人群之間的差異,因此,僅僅以傳統(tǒng)的文獻(xiàn)分析、問卷統(tǒng)計和現(xiàn)場觀察等民族學(xué)方法來進(jìn)行調(diào)查,得到的數(shù)據(jù)會存在較多誤差。
因此結(jié)合本校的民族特色和民族學(xué)領(lǐng)域獨特的研究優(yōu)勢,將信息認(rèn)知技術(shù)引入民族關(guān)系研究,運用圖像、心電和腦電數(shù)據(jù)進(jìn)行分析,將分析的結(jié)果和心理場景測試及民族學(xué)調(diào)查結(jié)果進(jìn)行相互印證和參數(shù)修正,從而獲得盡可能客觀的數(shù)據(jù),這些數(shù)據(jù)將有助于建立一個客觀、完備、科學(xué)的民族關(guān)系監(jiān)測體系,并真實全面地評估民族關(guān)系,從而使決策機(jī)構(gòu)及時做出正確的決策。基于多信息融合的民族關(guān)系監(jiān)測預(yù)警系統(tǒng)總體框圖如圖1所示。
目前該平臺已經(jīng)搭建,由北京市公共安全信息監(jiān)測平臺建設(shè)、北京市公共安全信息監(jiān)測平臺建設(shè)關(guān)鍵技術(shù)研究、基于多源信息融合的民族信任研究等多個重大項目支撐。在這個平臺的下面,涉及到人臉識別、表情識別,視頻監(jiān)控、認(rèn)識等領(lǐng)域,小波分析、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)、模糊數(shù)學(xué)、信息融合等人工智能知識得到了具體的應(yīng)用。學(xué)生可以根據(jù)自己的興趣愛好,自愿參加到該平臺下的某一項目,切實對自己所學(xué)知識有一個深刻的理解和掌握。
4結(jié)語
研究型實驗教學(xué)激發(fā)了學(xué)生的學(xué)習(xí)興趣,不但使學(xué)生更好地掌握了人工智能的基本概念、基本理論和基本技術(shù),也切實提高了學(xué)生的實際動手能力和編程能力。研究型實驗教學(xué)在實踐過程中還有以下問題需要改進(jìn):
1) 研究型實驗教學(xué)的理念很難普及。很多教師對研究型教學(xué)模式的內(nèi)涵未能準(zhǔn)確把握,把研究型教學(xué)模式等同于學(xué)生實習(xí)或者寫論文。
2) 研究型實驗教學(xué)的輔導(dǎo)老師素養(yǎng)需要提高。研究型實驗教學(xué)作為體現(xiàn)創(chuàng)新教育要求的現(xiàn)代教學(xué)模式,需要的不是知識傳授型的教師,而是高素質(zhì)的研究型教師。教師不僅是單一的教者,更應(yīng)該成為一個學(xué)者,教師不僅要有研究型教學(xué)的教育觀念、快速接受新知識的能力和高超的教學(xué)技能,要能夠合理地規(guī)劃和設(shè)計實驗內(nèi)容。
3) 需要建立一套合理的學(xué)生學(xué)業(yè)和教師績效的評價體系。
參考文獻(xiàn):
[1] 王萬森. 人工智能原理及其應(yīng)用[M]. 北京:電子工業(yè)出版社,2007.
[2] 蔡自興,徐光佑. 人工智能及其應(yīng)用[M]. 北京:清華大學(xué)出版社,2004.
[3] 李得偉,張超,李海鷹. 大學(xué)工科專業(yè)課程實施研究型教學(xué)的探討[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大學(xué)研究性教學(xué)的理念探析[J].教育導(dǎo)刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng
(College of Information Engineering, Minzu University of China, Beijing 100081, China)
Abstract: Knowledge representation is one of the central topics in artificial intelligence. Conceptual Structure is a new and effective knowledge representation method and Conceptual Graph is a concrete semantic model supported Conceptual Structure thoughts. This paper discussed the relation between Conceptual Structure and Conceptual Graph, the method and features of Knowledge representation about Conceptual Graph. Finally, it elaborated the application of Conceptual Graph in Chinese information processing.
關(guān)鍵詞:知識表示;概念結(jié)構(gòu);概念圖;語義
Key words: knowledge representation;conceptual structure;conceptual graph;semantic
中圖分類號:TP391 文獻(xiàn)標(biāo)識碼:A文章編號:1006-4311(2010)26-0145-02
0引言
知識是人類智能的基礎(chǔ),知識的表示是人工智能學(xué)科研究的三個主要問題之一[1]。人工智能經(jīng)過半個多世紀(jì)的發(fā)展,研究出了多種知識表示方法,如一階謂詞邏輯、規(guī)則、框架、語義網(wǎng)絡(luò)等。這些方法對于描述特定領(lǐng)域的問題求解已足夠了,并已得到廣泛的應(yīng)用,但傳統(tǒng)的知識表示方法就不能確切地表達(dá)語義問題。因此,傳統(tǒng)的知識表達(dá)方法能力還很有限,知識表示仍是很久以來人工智能研究的中心課題,還需要相當(dāng)深入的研究。概念結(jié)構(gòu)理論的出現(xiàn)為知識表示研究帶來了一種新的思路。概念結(jié)構(gòu)(Conceptual Structure)是一種以語言學(xué)、心理學(xué)、哲學(xué)、邏輯學(xué)和數(shù)學(xué)為基礎(chǔ)的新的知識表示方法,是由美國的計算機(jī)科學(xué)家John F.Sowa在1984年首先提出的,己被從理論上證明了優(yōu)于其它傳統(tǒng)的知識表達(dá)方法。它擴(kuò)展了人工智能的知識表達(dá)方法,對于信息時代從以數(shù)據(jù)處理為主的低級階段向以知識處理為主的高級階段的轉(zhuǎn)變和發(fā)展具有決定性的意義[2]。
概念圖(Conceptual Graph)是支持概念結(jié)構(gòu)思想的一個具體的語義模型,概念結(jié)構(gòu)理論及應(yīng)用就是基于概念圖發(fā)展起來的,也就是說概念圖是概念結(jié)構(gòu)思想的載體,通過它來發(fā)展、傳播、帶動知識表示領(lǐng)域、乃至整個人工智能領(lǐng)域的研究與進(jìn)步。概念圖的發(fā)展經(jīng)歷了二十幾個春秋,“Conceptual Structures: Information Processing in Mind and Machine reading”(sowa1984)揭開了概念結(jié)構(gòu)的序幕,“conceptual graphsfor a database inference”(Sowa1986)奠定了概念圖應(yīng)用的基礎(chǔ)。隨后,IBM公司投入了大量人力和物力,潛心研究,出現(xiàn)了一個又一個的成果。國內(nèi)從90年代開始,西北大學(xué)、西北工業(yè)大學(xué)也進(jìn)行了探索性研究[2]。
1概念圖的知識表示
概念圖是一種描述復(fù)雜對象結(jié)構(gòu)的知識表示工具,其思想來源于C.S.Pierce的存在圖和菲爾墨的語義網(wǎng)絡(luò),是以圖形表示的一種有向連通圖,它包括兩種結(jié)點:概念結(jié)點和概念關(guān)系結(jié)點,弧的方向代表概念結(jié)點和概念關(guān)系結(jié)點之間的聯(lián)系。概念結(jié)點表示問題領(lǐng)域中的一個具體的或抽象的實體,概念關(guān)系結(jié)點指出一種涉及一個或多個概念結(jié)點的關(guān)系[3],如動作(AGNT: AGENT),對象(OBJ: OBJECT),材料(MATR: MATERIAL),具有(POSS: POSSESSES),地點(LOC: LOCATE),狀態(tài)(STAT: STATUS),部分(PART),方式(MANR: MANNER),工具(INST: INSTRUMENT)等。在概念圖中,概念結(jié)點用一個矩形表示,概念關(guān)系結(jié)點用橢圓表示,有向弧標(biāo)出了概念關(guān)系結(jié)點所鄰接的概念結(jié)點。每個概念圖可以表示一個命題,典型的知識庫將包含大量這樣的圖。例如:A girl, Sue is eating pie fast. 其概念圖如下所示。概念圖上可以進(jìn)行拷貝、限制、連接和化簡操作,產(chǎn)生新的概念圖。
概念圖是基于語義網(wǎng)絡(luò)的邏輯系統(tǒng),用它來進(jìn)行知識表達(dá)不但直觀易懂,而且易于操作,通過對概念圖進(jìn)行各種操作,能產(chǎn)生新的概念關(guān)聯(lián)和推理規(guī)則。此外,概念圖還能直接和自然語言建立映射關(guān)系。概念圖所具有的這些優(yōu)點使它更適合于表達(dá)概念結(jié)構(gòu)。
2概念圖的特點
概念圖使用帶標(biāo)號的結(jié)點和連接這些結(jié)點間的帶標(biāo)號的弧表示知識,屬于語義網(wǎng)絡(luò)的范疇,其理論建立在謂詞邏輯上,能完全與自然語言相互翻譯,表示出自然語言的語義[5]。概念圖同其他知識表示方法相比,具有更直接的同自然語言之間的映射,圖形化表示、可讀性更佳,比邏輯公式更直觀的特點。概念圖具有結(jié)構(gòu)簡單、易讀、表示范圍廣、能夠確切地表示自然語言的語義、數(shù)學(xué)基礎(chǔ)嚴(yán)密等優(yōu)點,代表了知識表示的發(fā)展趨勢。
概念圖與經(jīng)典的知識表示方法相比,更符合人類的思維和語言習(xí)慣,但是它只能表達(dá)一些簡單的概念關(guān)系,并不適合于表達(dá)包含復(fù)雜概念結(jié)構(gòu)的常識性知識。用概念圖進(jìn)行知識表示需要分析知識的結(jié)構(gòu),所以其獲取過程要有領(lǐng)域?qū)<业膮⑴c,還不能通過一個智能系統(tǒng)自動獲取。此外,對于一個復(fù)雜的問題求解而言,這種基于概念圖的推理容易產(chǎn)生冗余或者導(dǎo)致推理結(jié)果的不一致。因此,基于概念圖的智能系統(tǒng)只能進(jìn)行一些簡單的問題求解,而對于包含大量的復(fù)雜概念關(guān)聯(lián)的常識性問題求解,概念圖還不能勝任。
3概念圖的應(yīng)用
概念圖的理論自從被提出來后,受到很多研究者的青睞并將它應(yīng)用到不同領(lǐng)域,例如知識工程、信息檢索等,在自然語言處理方面尤其語義理解方面具有廣泛的應(yīng)用。不少研究者基于概念圖進(jìn)行了研究與探索,并取得了一些成果。例如,殷亞玲[4]提出了一種基于概念圖的相關(guān)反饋技術(shù),采用概念圖的知識表示方式描述概念之間關(guān)系,從語義的層次上進(jìn)行相似度判斷,擴(kuò)展查詢式。朱海平[5]以概念圖作為語義表示,研究了基于概念圖匹配的語義檢索。楊選選[6]提出的基于語義角色和概念圖的信息抽取模型,是在語義層面上對信息抽取的嘗試。它將淺層的語義信息應(yīng)用于場景識別和抽取模式兩個層次上,并通過概念圖將句子的語義形式化、可計算化。劉培奇[7]結(jié)合主觀題中簡答題的人工批改過程,提出以概念圖理論為基礎(chǔ)的模糊含權(quán)概念圖知識表示方法;從漢語自然語言理解的語義分析角度研究了特定課程主觀題自動閱卷問題。
4小結(jié)
人工智能領(lǐng)域中絕大多數(shù)知識表示方法都直接或間接地涉及到概念結(jié)構(gòu),概念結(jié)構(gòu)是人類認(rèn)知能力的重要來源,現(xiàn)代的知識表示方法會越來越重視概念結(jié)構(gòu)。概念圖是一種有力的知識表示工具,能完全描述自然語言所表達(dá)的意思,實現(xiàn)與自然語言的互譯。我們相信對概念結(jié)構(gòu)和概念圖的深入研究必將對解決自然語言理解方面的難題產(chǎn)生重要貢獻(xiàn)和促進(jìn)作用。
參考文獻(xiàn):
[1]張仰森,黃改娟.人工智能教程[M].北京:高等教育出版社,2008.03.
[2]張蕾,李學(xué)良.概念結(jié)構(gòu)及其應(yīng)用[D].西北工業(yè)大學(xué)博士論文,2001.05.
[3]賀文,危輝.概念結(jié)構(gòu)研究綜述[J].計算機(jī)應(yīng)用與軟件,2010,27(1):156-159.
[4]殷亞玲,張蕾.基于概念圖的相關(guān)反饋系統(tǒng)的研究與實現(xiàn)[D].西北大學(xué)碩士論文,2006.07.
[5]朱海平,俞勇.基于概念圖匹配的語義搜索[D].上海交通大學(xué)博士論文,2006.10.
預(yù)計1個月內(nèi)審稿 省級期刊
天津市教委主辦
預(yù)計1個月內(nèi)審稿 部級期刊
中華人民共和國工業(yè)和信息化部主辦
預(yù)計1-3個月審稿 北大期刊
中國建筑材料聯(lián)合會主辦
預(yù)計1個月內(nèi)審稿 省級期刊
西南政法大學(xué)人工智能法律研究院主辦
預(yù)計1-3個月審稿 北大期刊
中國科學(xué)技術(shù)協(xié)會;中國自動化學(xué)會主辦
預(yù)計1-3個月審稿 CSCD期刊
中國科學(xué)院主辦