五月激情开心网,五月天激情社区,国产a级域名,婷婷激情综合,深爱五月激情网,第四色网址

路基路面設計論文優選九篇

時間:2022-03-02 13:12:10

引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇路基路面設計論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。

路基路面設計論文

第1篇

通過工程實踐分析,高速公路的工程質量存在諸多質量通病,當然有施工方面的原因,主要存在于設計方面的以下問題:路基土的回彈模量的計算問題:因為對土質的物理指標(含水量、密度、干密度、飽和度、飽和密度、空隙比、孔隙率、)等缺乏實地勘測試驗,多以經驗加估算設計,極易產生沿線路基的非均勻性沉降及其整體的CBR值準確,從而造成路面結構層的計算不符合行車軸載的實際情況。所以路基的彎沉值計算應該根據路基的干濕類型或80cm深度相對含水量確定路基的回彈模量,再以汽車荷載(附加應力)、路面結構層的恒載(自重應力)計算容許彎沉值是比較合理的,即路基允許彎沉值Lr=k9038E-0.938。式中意義:Lr——設計允許彎沉值(10-2mm);E——路基土的回彈模量(MPa);k——不利季節的影響路基壓實度與彎沉值的控制設計問題:傳統的理論認為路基分為上路基和下路基兩個部分,80cm深度內的上路基屬于上路基,是承受汽車軸載與路面恒載的主要受力結構層,以傳統JN--150后軸重100KN為參數,按照附加應力的擴展深度80cm計算的,尚未考慮運輸超載的個別因素,現在的車輪軸載已經超過該標準很多,一汽重卡或斯太爾車型一般到裝載90~100t,斯太爾(191型;后三軸12輪)半掛車,普通載重100~120t,單軸重達到20t,在很多干線公路上超載一倍的車輪都在一半以上,汽車輪胎的標準氣壓應該是0.7MPa,但實際上已經增大到1.0MPa,以上,經過計算軸載的附加應力、路面結構層恒載的自重應力及不可避免的超載因素已經達到100cm之多,確切地說,路基壓實度與彎沉值是因果關系,壓實度不足會影響到彎沉值指標不滿足路面結構層的承載力需要。因此;為結構層路面設計提供的技術參數偏低而且理論深度不盡全面,缺乏現場勘查理論數據的分析與計算,由于路基的整體強度薄弱也是造成路面結構層早期疲勞破壞的主要原因。對于不同干濕類型的路基,應采用不同的路基回彈模量,根據不同的路基回彈模量計算不同的路面設計彎沉值,不能狹義的以一張圖紙設計代表幾十公里路基設計的理論用于施工,國外的設計方法見下表1:根據計算得出的不同設計路基彎沉值,可通過路基補強或增加基層厚度取得一致的路基設計彎沉值,在此基礎上通過路面結構的雙層體系計算相同的路面結構層厚度。

結構層路面設計理念的改進問題

因汽車工業的技術發展與進步使軸載不斷增大,而不應以大型車輛的誕生而扼殺運輸能力,更說明我國路面結構層的設計的確存在理論缺陷,包括對建筑材料的質量品質以及計算理論存在不切合實際的問題,合理的建筑材料及路面結構層厚度滿足路用功能是檢驗設計理論的標準。基層結構組合問題:尤其高速公路路面結構比較厚,一般厚度在80cm左右,基于路面結構層的低溫抗裂性核高溫穩定性的使用功能,設計時應該盡量將半剛性基層用做底基層,基層采用柔性基層的設計。柔性基層一般采用乳化瀝青穩定大粒徑碎石混合料或設計為ATB25~30做基層更為理想。柔性基層的結構特性和強度機理分析;通常采用大瀝青碎石混合料做基層,使面層抵抗車轍、防止溫差變形有顯著作用,與傳統的瀝青混合料一樣,其組成結構為骨架空隙結構、懸浮密實結構及骨架密實結構。骨架空隙結構屬于開級配;骨架密實結構屬于密級配,一般采用骨架密實結構為多,主要考慮了抗裂性能及堅固抗車轍能力。該結構特點是粗骨料充分形成石子與石子接觸的骨架特征,剩余的空隙由少量的細集料、礦粉和瀝青填充,因此;具備了良好的骨架穩定度,骨架穩定度指壓實成型后的瀝青混合料粗集料的體積密度Pcm與松堆密度Pna之比即為骨架密實度S=Pcm/Pna,骨架特性具有較大的內摩阻力和嵌擠力、骨架穩定性及強度衰減慢等特點,很好的抗高溫變形能力,該結構更適用于高溫或溫差大以及重交通地區的基層。柔性基層的力學特點:因組成材料以粒料為主,具有較大的孔隙率,其主要特點不會因溫度、濕度的變化引起收縮裂縫,相鄰層次產生的裂縫也不會通過柔性基層反射到面層,具有良好的抗裂、防裂、和阻止裂縫擴展的能力。況且由于孔隙率大可及時、迅速的排除進入路面結構內的雨水,減輕瀝青面層的水害影響。柔性基層的剛度小于剛性和半剛性基層,一般瀝青穩定碎石的回彈模量約為1000Mpa,級配碎石的回彈模量約為500Mpa,因此,在瀝青路面結構中瀝青面層與柔性基層共同成為承重結構層。

結構層的路面設計原理與數學參數分析

瀝青路面結構層的厚度計算公式原理與步驟:根據汽車軸載、輪胎直徑與氣壓,采用雙層體系的當量圓計算模式圖1。按圖解法包括路基在內將路面結構的多層體系換算成為三層體系,采用雙層體系的當量圓計算模式,確定輪胎直徑與氣壓,此次分別推算結構層厚度。以雙輪組單軸載100KN為標準軸載,對不同車型軸載進行標準的軸載換算,N=∑.C1.C2.ni.(pi/p)4.35;累計當量軸次:Ne=[(1+γ)t-1×365].N.η/γ;軸載換算:N=∑.C1.C2.ni.(pi/p)8;設計彎沉值:Ld=600Ne-0.2.Ac.AS?Ab路面結構層的優化設計的宗旨是:實際彎沉值小于允許彎沉值Ls<Ld,實際彎拉應力小于允許彎拉應力σm<σR,實際剪應力小于允許剪應力τа<τR,合理造價小于最大值及大于最小值;hmin<h<hmax,路面總厚度大于冰凍厚度,H>Ht,根據不同地區氣候條件分別設計。高速公路瀝青混合料面層一般設計為三層結構,然而考慮到防水必須做封層,根據工程實踐,將封層設計在上面層和中面層之間更為合理,一般使用1.5L/m2的改性瀝青和鋪撒2~3m3/Km2的碎石,粒徑在5~10mm之間,通過腳輪壓路機穩定后防水效果更好。有關瀝青混合料的最大粒徑D同路面厚度h的關系,經過大量的工程實踐研究表明;隨著h/D的增大路面的疲勞耐久性提高,但車轍量增大;反之h/D的減小而車轍量也減小,但耐久性降低,特別是h/D<2時;疲勞耐久性急劇下降,因此;結構層厚度與礦料最大粒徑的比值應控制在h/D≥2為宜。<<公路瀝青路面施工技術規范>>(JTJF40-2004)規定,對熱拌熱鋪密級配瀝青混合料;一層壓實厚度不宜小于公稱最大粒徑的2.5倍,對于高速公路、一級公路不宜小于公稱最大粒徑的3倍,對于SMA和OGFC等瀝青混合料則不應小于公稱最大粒徑的2.5倍。同時礦料的最大粒徑宜從上而下逐漸增大,與結構層的設計厚度相匹配,以保證瀝青路面的壓實厚度、減少礦料離析。特別提倡瀝青混合料實驗采用的是GTM法成型試件;提倡同時以米歇爾理論加以驗證,最大限度的提高了很合理的密度及相對減少了瀝青含量,對路面低溫抗裂性核高溫穩定性有顯著技術改進。

半剛性材料基層7d無側限強度的設計理論問題

第2篇

1.1.1公路設計首先要對線路選擇、斷面設計、結構層設計和排水設計等進行綜合考量,并給出三四個設計方案,然后結合工程造價、經濟社會效益等,從中優選出最佳方案。參照的規范有《城市道路設計規范》《公路瀝青路面設計規范》和《公路水泥混凝土設計規范》等。1.1.2公路交叉口規劃與設計公路交叉口設計包括渠化及交通組織設計和豎向設計兩種。渠化及交通組織設計應當根據相交道路的等級來確定是否需要渠化。具體渠化后的交通組織,例如轉向和直行車道的劃分等,需要根據交通需求來設置。豎向設計可以通過很多軟件進行。1.1.3交通控制與管理的原則交通控制與管理的原則包括分離原則、限速原則、節源原則和可持續發展原則。1.1.4公路標志和標線公路交通標志和標線的分類、顏色、形狀、線條、字符、圖形和尺寸等應符合現行《道路交通標志和標線》中的相關規定。公路標志和標線應在路網分析的基礎上,綜合考慮公路的交通狀況、交通條件、氣象和環境條件等因素,并根據各種交通標志和標線的功能、駕駛人的行為特征和交通管理的需要進行設置。1.1.5公路照明為了使駕駛者能在夜間辨認出道路上的各種情況,且不會感到過度疲勞,就要在公路上設置相應的照明設施。公路照明的質量主要表現在亮度水平、平均照度、眩光和視覺引導這四個方面。照明燈具一般分為截光型、半截光型和非截光型三種。1.1.6路側環境管理路側環境管理主要體現在對路側植物的管理上。路側植物主要有美化環境、減緩司機疲勞、吸收有害氣體和粉塵、凈化空氣和減少噪聲等作用。1.1.7設計車速與運行車速的選擇和控制設計車速決定著道路的幾何形狀。運行車速則是針對設計速度的不足,避免產生速度突變,保證汽車行駛的連續性而引入的,主要用于根據設計速度初定道路線形、通過測算模型計算路段運行速度、用速度差控制標準檢查和修正線形和以修正后的運行速度為依據來確定線路的其他設計指標。兩者的區別在于:設計速度是一個固定值,用于極限指標的控制;而運行速度則是根據設計速度和測算模型計算所得的線形,用于非極限指標的控制。1.1.8交通弱者的安全措施交通弱者的安全措施包括設置人行道、行人交通信號和安全島,且路肩要有一定的寬度,并符合質量要求。

1.2公路用戶行為規范

在公路安全系統中,人是公路用戶的主體。實踐證明,在諸多交通事故中,公路用戶行為的不規范是導致事故發生的主要原因之一。社會需要規則,公路交通安全同樣需要用戶行為規范來保證。不同的人,成長環境、性格和行為習慣不同,這些不同使他們在共用公路這一公用設施時會產生不同的行為。一旦違反交通規則,就會導致公路交通的不暢,甚至發生交通事故,因此,要制訂規范的、標準的、具有法律效力的用戶行為規范,以規范用戶的行為,為公路安全工程的順利進行提供保障。

2公路安全檢查

2.1主要內容

公路安全檢查的主要內容包括安全制度的建立情況,安全管理人員和專職安全員的在崗情況,安全責任制的簽定和落實情況,安全生產的經常性檢查和整改情況,特種作業持證上崗情況,爆破器材的管理和使用情況,勞保用品的領用和使用情況,違章指揮、違章作業、違反勞動紀律情況和現場安全文明施工情況等。

2.2技術路線

路線:安全檢查準備階段—安全因素識別分析—安全檢查單元劃分—安全檢查方法選擇—定性、定量評價—提出安全對策措施—形成安全檢查結論和建議—編寫安全檢查報告。

2.3實施程序

針對安全生產的實際情況,擬定安全檢查的具體細則和考核辦法,或按照上級安全生產督察評價標準直接進行安全檢查。

3結束語

第3篇

1.1綜合排水設計的原則在對瀝青路面結構進行優化時,要做好路面排水設計,這樣可以延長路面的耐久性,也可以增強路面的承載能力。南方地區,由于夏季雨水比較多,如果路面排水設計存在漏洞,很容易造成路面積水問題。另外,設計人員還要合理布局道路周圍的排水設施,需要充分考慮路面結構組合設計。另外,在進行路面改建施工時,也需要結合實際,對道路排水系統進行更改,提高路面的防滲性以及路基的承載能力,使瀝青路面結構組合設計更加優質。

1.2增加路面結構層功能性的原則瀝青路面是道路施工中常見的類型,瀝青這種材料的性能比較強,在設計其層面結構時,要注意提高路面的抗滑性以及耐磨性,還要提高路面結構的抗剪性以及抗拉能力。由于道路暴露在外界環境中,所以自然氣候因素以及車載作用力對其質量影響比較大,如果面層材料的強度不高,粘結力不強,則會影響路面的整體質量,還會影響其功能的發揮。面層的等級越高,其承受車載的能力則越強。在城市快速路以及一級公路設計中,由于交通量比較大,所以設計人員需要增強路面結構層的功能,要選擇優質的施工材料,提高混凝土面層的質量。瀝青結構層一般是由細粒式瀝青混凝土作為表面層,中、粗粒式瀝青混凝土作為中下面層構成,既可有效防水又可保證強度,所以,優化路面結構層設計,應注意確保路面的剛度以及穩定性。

2瀝青路面結構組合類型之間的影響

2.1各結構層荷載應用分布特點路面在投入使用后,其各個結構層會受到荷載作用力的影響,而且荷載的大小隨道路結構層的深度而遞減,在不同的層面中,需要應用不同的施工材料,這些材料的強度會隨道路結構層的深度而減小。所以,在設計路面結構層時,需要以強度自上而下的遞減方式進行組合,這種組合類型在瀝青路面設計中應用較為廣泛,而且收到了較好的效果。在對路面基層進行施工時,要充分利用施工材料,按照就近的原則多利用當地材料,這樣有助于降低工程造價。在對瀝青路面的組成材料以及構件進行重新組合時,要分析材料強度隨深度的變化規律,當路面結構層之間的模量相差較大時,要注意控制結構層間的拉應力,如果其差值超過材料的承受范圍,則可能出現瀝青路面結構層斷裂的問題。根據以往設計經驗,土基與基層的模量之比需要控制在0.08~0.40之間,而基層與面層回彈模量之比需要控制在0.3,道路設計人員,在對瀝青路面結構組合進行優化時,要避免出現拉應力過大的問題,要根據不同的結構層,選擇不同的材料,只有掌握好各結構層材料變化規律,才能設計出最佳的組合方案。

2.2各結構層特性以及相互影響瀝青路面結構是由多種材料構成,在不同的層面上,需要應用不同的施工材料,這樣材料的強度以及影響有一定差異。在組合的過程中,要注意其相互之間的影響,消除各結構層特性的不利因素,并采用有限的措施,對結構層組合類型進行限制。在瀝青混凝土道路工程中,經常會用到石灰以及水泥這類材料,其受溫度影響比較大,如果施工工藝存在漏洞,會導致路面出現大量的裂縫現象,所以,設計人員需要采取有效的措施降低基層材料的收縮問題,可以增加細料含量,還可以增大結合料的劑量,從而降低反射裂縫出現的概率。設計人員可以適當增加面層厚度、設置瀝青碎石緩沖層、設置應力消散層或吸收層等;在潮濕的粉土或粘性土路基上,不宜直接鋪筑碎(礫)石等粗顆粒材料。必要時可在路基頂面設土工布隔離層,以防止相互摻雜而污染基層,或導致過大變形而使面層損壞。層間結合應盡量緊密,避免產生滑移,以保證結構的整體性和應力分布的連續性。瀝青面層與半剛性基層或粒料層之間應設置透層瀝青,根據施工條件如多層瀝青層次能否連續施工、施工期內是否多雨等采取相應的層間結合措施。

3結語

第4篇

搭板設計工作是真正解決橋頭跳車問題的方法。為了保證橋臺連接位置高度與搭板標高相同,需要預留反向坡度,高度要比設計標高高,并且確定坡度大小時要重點考慮路橋沉降差。橋臺和搭板在錨固時有兩種可考慮的處理方式,分別為水平、豎直處理方法,其中,水平處理方式能夠獲得更加合理的受力狀態。施工作業時按照實際情況,在經過周密論證之后確定是否需要設置枕梁,搭板上傳遞下來的荷載經過枕梁之后就會更加均勻地分布傳遞給地基。如果橋頭不設置搭板,那么就需要安排合理、有效的排水設施,提高橋臺位置的壓實度,引道則需要重點考慮沉降量。在實際設計過程中,如果不設置搭板,橋頭高填方路面結構就需要使用無機結合料。

2路橋過渡段路基路面施工

2.1臺后填筑施工中,整個臺背填筑需要從地基施工開始就進行加固,采用沙土、砂礫土或者碎石土進行填筑,按照加固需要,有必要時可以使用石灰或者水泥來提高穩定性,也可以使用半剛性材料進行填筑,來降低施工后沉降,而且對壓實度要求要適當提高,使用土工合成加固臺背路基,能有效控制填土載荷產生的變形和沉降,對不均勻沉降的控制作用更加顯著。在軟土路基上進行施工,需要首先做地基加固處理。2.2地基處理軟土路基上澆筑橋臺,需要使用樁基礎,如果是在厚度較大的軟土路基上進行澆筑,回填料重量會明顯增加樁基承受的壓力,導致橋臺移動,可能會造成橋臺橋面損壞,為了控制這種不正常位移,需要有效控制回填料強度。2.3臺背排水臺背路基填筑之前,需要在原地基土拱上設置排水管或者盲溝。首先需要進行基底處理,填筑橫坡度在3%~4%的夯實黏土,形成土拱,并在土拱上設置雙向地溝。臺背厚度要全范圍鋪設隔水材料,并在地溝周邊設置小孔硬塑料管,保證泄水管出口伸出路基之外或者橋頭錐坡外。另外,要在橋臺背面設置防水涂層,以減少滲水對結構物的侵蝕,并在回填夯實表面設置截水排水設施,必要時可進行封閉處理。2.4搭板施工路橋工程過渡段路基路面施工會對工程整體質量產生巨大影響,有必要采取措施進行工藝控制。2.4.1沉降處理沉降處理是路橋過渡段路基路面搭板施工的基礎和前提,很多路橋工程都是因為沉降處理工藝措施不合理而造成橋頭跳車問題。除此之外,有效的沉降處理能夠減少雨水對路堤填土的侵蝕和填土流失。2.4.2填土施工填土施工是路橋過渡段路基路面搭板施工非常關鍵的環節,路橋過渡段路基路面搭設填土施工中,需要從施工用料、流程、機械、工具等方面著手進行控制,以控制誤差,進而提高填土施工的有效性。由于路橋運營過程中,車輛載荷、自然因素和施工工藝的影響會降低路基路面的平順程度,所以填土施工過程中需要注意提高其強度和韌性,從而有效減少上述問題。2.4.3過渡段施工過渡段施工是路橋過渡段施工的核心工作,我國很多路橋工程過渡段整體結構在施工方案不合理等問題的影響下,路橋的整體強度和使用壽命都明顯下降。路橋過渡段施工主要有粗粒料填筑法、鋼筋混凝土加筋法等過渡施工方法,需要按照工程實際情況選擇適用的方案,減少過渡段沉降差異,改善過渡段不平順的問題。2.4.4結構強度提升適當提高結構強度,是提高路橋過渡段施工質量和路基路面穩定性的重要措施。提高路橋工程結構的強度是路基路面質量、柔性和韌性的基礎。在提高結構強度時,施工人員需要考慮過渡段不同位置的強度需求,充分考慮不同級配填料,且不同級配填料的使用能夠明顯提高路堤結構強度;按照設計標準,將差異沉降控制在5cm以內。

3結束語

第5篇

關鍵詞:砼路面;設計;路基 

1 前言 

 

水泥混凝土路面有很多的優點:路面強度高、承載能力大,耐磨耗能力強,能見度好,使用壽命長,養護費用少,行車的油耗也較瀝青路面少10%——15%,正因為有這些優點,所以水泥混凝土路面在許多省市廣泛使用,也取得了比較好的效果。 

80年代至90年代初期,我國的水泥混凝土路面建設呈現一個高峰期。但從道路使用運營狀況來看,大多數的水泥混凝土路面難以達到20一30年的設計使用年限,并且出現一些較嚴重的缺陷,如路面的早期斷裂、錯臺邊角破損、平整度及粗糙度差等給行車和養護帶來一定的困難,且不易處理,修復費用高難度大。究其原因,除了設計施工質量問題外、還有各種自然因素的影響。因此本文將從設計構造的角度,就如何提高水泥混凝土路面的使用性能,有效的控制路面的缺陷,結合自己的實踐體會與具體做法提出一些探討意見,供同仁參考討論。 

 

2 水泥混凝土路面設計中的理論依據問題 

 

2.1 路面設計指標可靠度的分折 

公路工程結構的設計安全等級為3個等級.路面工程的安全等級僅考慮高速公路。一級公路和二級公路的路面,相應的安全等級要求規定為一級、二級和三級。為三級和四級公路路面增加一個設計安全等級-- 四級。并規定了相應的設計基準期為20MPa;而設計安全等級為四級的路面結構的目標可靠指標和目標可靠度.系按前三級的數值級差遞降得到的。按施工技術、施工質量控制和管理要求達到和可能達到的具體水平.選用其他等級。降低選用的變異水平等級,須增加混凝土面層的設計厚度要求;而提高選用的變異水平等級.則可降低混凝土面層的設計厚度或混凝土的設計強度要求。可通過技術經濟分析和比較予以確定 但對于高速公路的路面,為保證優良的行駛質量,不宜降低變異水平等級 材料性能和結構尺寸參數的變異水平等級.按施工技術、施工質量控制和管理水平分為低、中、高三級 由滑模或軌道式施工機械施工.并進行認真,嚴格的施工質量控制和管理的工程.可選用低變異水平等級。由滑模或軌道式施工機械施工,但施工質量控制和管理水平較弱的工程,或者采用小型機具施工,而施工質量控制和管理認真、嚴格的工程可選用中低變異水平等級。采用小型機具施工,施工質量控制和管理水平較弱的工程。可選用高變異水平等級。 

設計時.可依據各設計參數變異系數值在各變異水平等級變化范圍內的情況選擇可靠度系數。目標可靠度是所設計路面結構應具有的可靠度水平。它的選取是一個工程經濟問題:目標可靠度定得較高,則所設計的路面結構較厚,初期修建費用較高。但使用期間的養護費用和車輛運行費用較低;目標可靠度定得較低,初期修建費用可降低,但養護費用和車輛運行費用需提高。通常采用“校準法”來確定目標可靠度。“校準法”是對按現行設計規范或設計方法設計的已有路面進行隱含可靠度的分析,參照隱含可靠度制定目標可靠度,則所設計的路面結構接納了以往的工程設計和使用經驗,包含了與原有設計方法相等的可接受性和經濟合理性。 

2.2 交通量計算取值的分析 

軸載換算公式是以等效疲勞斷裂損壞原則導出的。對于同一路面結構,軸載和標準軸載產生相同疲勞損耗時。才能等效換算。在交通調查分析雙向交通的分布情況時,應選取交通量方向分配系數,一般可取0.5;并依據設計公路的車道數.確定交通量車道分配系數(應剔除2軸4輪以下的客、貨車交通量),即為設計車道的年平均日貨車交通量ADTT,然后用軸載當量換算系數法或車輛當量軸載系數法求得),再根據設計基準期l和輪跡分布系數、交通量增長率求得累計f 用次數N,確定交通分級。

2.3 水泥混凝土路面結構組合的設計分析 

對于路基用土.高液限粘土及含有機質細粒土.不能用做高速公路和一級公路的路床填料或二級和二級以下公路的上路床填料;高液限粉土及塑性指數大于16或膨脹率大于3%的低液限粘土,不能用做高速公路和一級公路的上路床填料。因條件限制而必須采用上述土做填料時,應摻加石灰或水泥等結合料進行改善。對于基層材料選擇時。特重交通適宜貧混凝土、碾壓混凝土或瀝青混凝土時,設計計算應按復合式路面分析。且強度以試驗為準 對水泥混凝土面層下基層的首要要求是抗沖刷能力不耐沖刷的基層表面。在滲入水和荷載的共同作用下會產生淤泥、板底脫空和錯臺等病害,導致行車的不舒適,并加速和加劇板的破裂。混凝土面層下采用貧混凝土基層,主要是為了增加基層的抗沖刷能力,并不要求它有很高的強度。高強度的貧混凝土并不能使面層厚度降低很多,反而會增加混凝土面層的溫度翹曲應力,并產生會影響到面層的收縮裂縫。另外.新規范取消了基層頂面綜合模量的規定值的要求。 

對于面層板來說,我國絕大部分混凝土路面的橫向縮縫均未設傳力桿。不設傳力桿的主要原因是施工不便。但接縫是混凝土路面的最薄弱處,唧泥和錯臺病害,除了基層不耐沖刷外.接縫傳荷能力差也是一個重要原因。同時,在出現唧泥后。無傳力桿的接縫由于板邊撓度大而容易迅速產生板塊斷裂。此外,接縫無傳力桿的舊混凝土面層在考慮設置瀝青加鋪層時.往往會因接縫傳荷能力差易產生反射裂縫而不得不加大加鋪層的厚度。為了改善混凝土路面的行駛質量,保證混凝土路面的使用壽命,便于在使用后期鋪設加鋪層,新規定了在承受特重和重交通的普通混凝土面層的橫向縮縫內必須設置傳力桿。另外,新規范僅強調了在鄰近橋梁或其他固定構造物處設置脹縫,取消了變坡點、小半徑曲線設脹縫的限制,使行車更順暢。 

 

3 路面接縫處理的設計 

第6篇

平A1類交叉口優化設計應與交通組織設計、交通信號控制及交通標志、標線等管理設施設計同步進行。遵循人車分隔、機非分隔,各行其道的設計原則,根據交通流量和流向充分利用交叉口的時間和空間資源,妥善處理各交通流之間的干擾,以達到分離和控制交通流,使交叉口各交通流達到有序、安全、通暢。主要內容包括:車道功能劃分,機動車進、出口道設計,交叉口內部區域優化設計,行人及非機動車交通組織設計以及交通信號控制、交通標志標線等管理設施設計。

2平A1類交叉口目前存在的主要問題

現以晉中市某現狀道路平面交叉口(紅線寬52m主干路與紅線寬30m次干路相交的十字交叉口)為例,介紹交叉口實際使用中存在的問題。該交叉口為主、次干道平面相交信號控制十字形交叉口,是晉中市通往城區西部的主要交通要道,周邊分布著吸引大量交通流量的辦公樓、大型酒店等主要工作、消費場所。東西向主干路為三幅路型式,路段上為雙向四車道,道路中央設有分隔欄,進口處一個左轉進口車道和兩個直行進口車道,右轉機動車借用非機動車道右轉。南北向次干路為兩幅路型式,中間為中央綠化隔離帶,進口處一個左轉直行道,右轉機動車借用非機動車道右轉。經分析,目前存在的問題是:交叉口未優化交通,交通指示信號燈采用二相位信號燈,同時控制直行與左轉車道,造成交通混亂,致使左轉機動車通行能力減小,右轉機動車與同向行駛的非機動車沖突嚴重,易引發交通事故。南北方向次干道進口直行車道數少于出口車道數,造成路口通行能力下降。人行橫道地面標線劃分不合理,缺少行人二次過街設施。車輛和行人通過距離偏大,使得交叉口的信號周期變長,降低了各交通流的通過率。

3平A1類交叉口可進行的具體優化措施

為保證行車安全,在滿足停車視距要求的前提下,通過設置交通島可減少車輛停止線之間的距離,避免交叉口內車流游蕩,造成車流秩序混亂。同時相應縮短人行橫道長度,進而很大程度上減小了平面交叉口的面積,可有效地縮短車輛和行人在路口的通行距離和通行時間。并采取展寬交叉口的措施,按照車流前進的方向劃分左、右轉專用車道,明確其行進軌跡,減少各個方向交通流之間的相互干擾。而且結合信號燈控制,實現人車分離,各行其道,互不干擾。利用中央綠化分隔帶交通島作為安全島,確保行人安全過街,并相應配套綠化景觀效果,提高城市品位。依據現狀交通流量,按照相關規范要求對以上兩種道路板塊重新進行了規劃設計,并對交叉口進行了展寬設計。

3.1平A1類交叉口進出口車道設計

本工程東西向主干路現狀為三幅路型式,設計為四幅路型式,中間為2m中央綠化分隔帶,兩側各11m機動車道(雙向六車道),5m綠化隔離帶(在距交叉口出口道一側緣石轉彎半徑終點100m處,設置了公交港灣式停靠站),5m非機動車道,4m人行道。將現狀道路中央分隔欄改為2m寬中央綠化分隔帶,用于分隔對向交通流,同時增添道路綠化景觀效果,美化城市風貌;考慮車道數平衡問題,要求車輛盡快通過并離開交叉口,壓縮進口道右側綠化隔離帶,將進口道分別拓寬增加一個車道,由現狀兩個直行道增加為三個直行道。本次設計為一個左轉專用車道(3.25m),三個直行進口車道(3×3.25m),三個直行出口車道(3×3.5m)(直行車通行能力增加一倍),一個右轉專用車道(4m)。南北向道路斷面板塊和現狀道路一致,設計為中間3m中央綠化分隔帶,兩側各11m機非共板道,2.5m人行道。本次設計為一個左轉專用車道(3.25m),兩個直行進口車道(3.5m),三個直行出口車道(3.25m+2×3.5m)(直行車通行能力增加兩倍),一個右轉專用車道(4m)。為減輕交叉口通行壓力,在中央綠化分隔帶距停車線120m處均做了斷口,便于機動車提前調頭使用(左轉車通行能力相應增加30%)。通過交叉口展寬設計,增大了交通流通過交叉口的通行斷面,增強了通行能力,使機動車能快速、順暢安全地通過。

3.2平A1類交叉口內部區域優化設計

1)設置安全島使停止線前移,能減少交叉通流可能產生沖突的路面面積,加快了車輛和行人在交叉口內通行速度,從而提高了道路平面交叉口的通行能力。2)左轉及右轉車輛交通組織設計。a.進口道左轉專用機動車道優化設計。處理好左轉交通,增加專用左轉車道是交叉口規劃設計的重點。在城市已建的平A1類交叉口,可采用進口道中線偏移的方案;在新建擴建改建時可采用進口道展寬,壓縮進口道中央分隔帶寬度的方案。當高峰15min內每信號燈周期左轉車平均流量達兩輛時宜設一條左轉專用車道,達十輛時宜設兩條左轉專用車道,并把司機朋友非常喜歡的左轉超前候駛區盡可能地延伸出去。本次設計在交叉口進口設置一條左轉彎專用車道,并施劃左轉彎待轉區,使左轉彎車輛從直行交通流中分離出來,增加直行車道通行能力。合理組織左轉車輛的交通,是保證交通安全,提高交叉口通行能力非常有效的方法。b.提前右轉彎優化設計。本次設計在進口道右側綠化隔離帶做了斷口,便于機動車提前右轉,按規范要求交叉口設計了展寬,利用安全島在展寬進口道新增右轉4m寬右轉專用機動車道,便于右轉機動車行駛順暢,有效地緩解了直行車的通行壓力,這樣就可以大大減少交叉口的沖突點,提高交叉口的通行能力。

3.3行人及非機動車交通組織設計

目前,我市非機動車交通仍是廣大人們出行的主要方式,成為我市交通的一大特點,由原來單一的以人力為主的自行車發展到以電動車作為部分城市居民出行的代步工具,使得行車速度上有了較大的提高,由此勢必帶來一定的安全隱患,特別在交叉口停車線前擁擠堵塞時,其密度更大。基于以上原因,根據目前非機動車的交通特性,按照新的交通管理制度,在空間和時間資源方面對交叉口進行了優化設計。1)進口道右轉專用非機動車道優化設計。進口道展寬開辟專門用于右轉的3.5m寬非機動車道,真正實現機非分離,避免二者相互干擾,既提高了非機動車的通過效率,又減少了交通事故,大大改善了交叉口的通行能力。2)行人過街優化設計。在人行橫道處利用綠化隔離帶設置行人二次過街安全島,并保留端部1m~2m的分隔帶,對駐足的行人起保護作用,提高了通行的安全性。同時建立交通管制,在安全島增設行人過街通行信號燈,可明確指示行人二次過街安全通行,規范行人交通后,保證了交叉口內的行車速度,從而提高了道路的通行能力。3)交通島設計。本工程在交叉口內設置四個直角邊均為15m三角形的交通島,稱為導流島,可以起到誘導、分離交通流的作用。同時,利用導流島作為街頭綠化小品,提升了城市內涵3.4優化交通標志標線合理設置標志標線,明確路權,控制沖突點,為各方向交通流提供明確的行駛方向及路徑,減少其之間的相互沖突及干擾,達到優化設計的意圖。交通指示信號燈采用了多相位箭頭信號燈,與完善的交通標志標線設施配合,駕駛員可預先判斷行駛方向,增加行車安全度。根據監控實測機動車交通量資料,適當調整信號燈信號周期時長,控制早、中、晚高峰期,相應增加主干路信號燈“綠信比”。

4結語

第7篇

    日本國土總面積僅僅有37萬多平方公里,約相當于俄羅斯的1/45,中國和美國的1/25。它擁有人口約1.3億,其中的80%居住在城市,而且平均每2人就擁有1輛汽車。日本人口密度之大,擁有汽車數量之多,可謂世界各國所少有。就拿日本的首都東京來說,和北京比起來,東京市內可謂沒有大路,路窄,行車道也窄,而且不常見到立交橋,市內核心區的很多干道也只不過是雙向四車道。東京車流密集但是基本不堵車,道路通過率極高,事故率極低,交通繁忙而井然有序。是什么原因讓日本的交通達到最優化的配置呢? 

    二、高度發達、便捷高效的軌道交通網絡體系 

    在日本,軌道交通包括城市間的火車、城市中的地鐵和有軌電車。軌道交通第一個優勢是經濟。日本汽車售價相對便宜,但保有和維護私家車的經濟支出很大。相比之下,軌道交通則要劃算得多。 

    便捷也是軌道交通吸引乘客的重要原因。日本城市軌道交通系統非常發達,在東京,居民一般步行10分鐘至15分鐘就可以到達最近的車站。 

    日本軌道交通車輛充足。為了保證乘客的需要,東京的地鐵、有軌電車在白天一般5分鐘左右一趟,高峰時則每隔兩分半鐘就發一趟車。 

    軌道交通乘坐環境也非常舒適。地鐵、電車車輛一般都配備良好的通風系統,可以做到車廂冬暖夏涼。車廂每個車門上方都安裝有液晶顯示器,提示站名,提供換乘指南、線路運行狀況等信息。 

    日本軌道交通依靠自身的優勢吸引了乘客,同時降低了人們駕駛私家車出門的需求。在東京,有超過90%的人選擇乘坐軌道交通工具上下班,選擇私家車的只有6%。這不僅緩解了交通擁堵問題,對保護環境也發揮了明顯的作用。 

    除地鐵之外,日本的高架輕軌列車也很方便。這種“空中列車”與地鐵一樣,也是間隔2~3分鐘1趟,與地鐵相互呼應,相得益彰,構成日本都市的立體公交,激活和促進了日本社會人流、物流、信息流的高速聚散與運轉。 

    三、先進的智能交通管理系統 

    日本東京的電腦自動化智能管理交通的流程,使借助遍布主要路段的6000部車輛感知器、90部自動攝影機,將路面情況傳送至警視廳的21個電視屏上,通過電腦分析,將各路段的車流擁擠程度、車速等數據,用紅、黃、綠等顏色自動顯示出來,而指揮中心很快就可以掌握全盤情況,然后通過電臺廣播直接指揮。 

    (一)車輛導航系統 

    為了使駕駛員在駕駛中可以采取最佳的行動,通過分散交通流等為駕駛員提供便利,將經過路線的堵塞信息、所需時間、交通管制信息、停車場的滿空信息等通過雙向通信的導航系統或信息裝置提供給駕駛員。此外也可事先在家中、辦公室等地獲得同樣的信息以便制定合適的出行計劃。

    (二)安全駕駛 

    為預防事故通過車輛、道路的各種傳感器掌握道路、周邊車輛的狀況等駕駛環境信息,通過車載機、道路信息提供裝置等實時地為駕駛員提供信息,并進行警告。此外通過在車輛設置自動控制功能,判斷自身車輛及周圍車輛的位置、動向、障礙物等信息危險時自動地實施車速控制、駕駛控制等輔助駕駛動作。隨著輔助駕駛功能的完善最終實現自動駕駛。 

    (三)行人輔助系統 

    通過使用便攜式終端、磁、聲等各種設施、道路引導設備幫助老弱病殘者行走,以保證其安全。此外,在行人橫穿道路時可以通過便攜式終端延長綠燈時間,為行人提供幫助。車輛方面可以通過監測車輛前方的行人,警告司機或自動采取剎車等措施預防交通事故。 

    此外,在智能交通的發展下,日本誕生了新的交通管理系統UTMS。它包括十個子系統:公交優先系統(PTPS)、交通信息提供系統(AMIS)、綜合智能圖像系統(IITS)、安全駕車輔助系統(DSSS)、行人信息通信系統(PICS)、緊急車輛優先系統(FAST)、緊急狀態通報系統(HELP)、環境保護系統(EPMS)、動態誘導系統(DRGS)、車輛行駛管理系統(MOCS)。 

    這一系統使用,可使交通事故降低30%,并且減少五分之一的交通擁堵時間。 

    四、交通法規全民教育 

    日本少年兒童從小接受交通安全教育,因此養成了一個良好的遵守交通規則、維護交通秩序習慣。

    日本各種民間組織,如全日本交通安全協會和日本自動車聯盟(JAF)等8家協會分別對不同的人(包括老人和兒童)進行全面的交通安全教育。教育的手段多種多樣,有講座、交流、同車駕乘、觀察他人的駕駛行為、通過模擬駕駛儀體驗危險以及交通危險預知訓練等。教育的內容也很豐富,有交通法規、交通事故處理、保險知識、車輛的構造與維護、ITS 知識及個人的生理特征等。 

    日本人駕車比較講文明禮貌,只要人行橫道上還有1個行人,汽車就絕對禮讓。車如此,人亦如此,很少有闖紅燈之類的違章行為,這種通行有序的情景讓人感受其文明程度的具體和實在。人、車各行其道,相互禮讓,繁忙而有序,使日本城市交通和諧暢通。 

    除了與駕駛者文明開車有關外,再就是管理嚴格。日本交通法規對無照駕駛、超速行駛、闖紅燈、酒后開車、違章停車等行為的處罰相當嚴厲。 

第8篇

由于微小平面度的高精度測量對測頭需要小型化和輕量化,因此采用measurement公司MHR050型LVDT傳感器,輕質鐵芯有助于減小應力以及保證鐵芯激勵組件結構的完整性。線圈和鐵芯之間的緊密電氣耦合可得到高度靈敏的測量效果。整體質量6g,線性量程±1.27mm,激勵電壓3Vrms,工作頻率范圍2kHz~20kHz。LVDT傳感器輸入的是磁芯的機械位移,輸出是與磁芯位置成正比的交流電壓信號,結合信號調理芯片AD698使用能夠以較高精度和重復性誤差將傳感器的機械位移轉換為單極性或雙極性直流電壓。

電信號經低噪聲AD8476差分運算放大器送至A/D轉換器。預達到平面度誤差0.1um~0.01um的精度,所需A/D轉換器的位數n。由于線性量程為±1.27mm,即在3mm的范圍內實現最小0.01um的分辨率,經計算需21位的ADC芯片,考慮到噪聲和濾波的影響,因而采用24位AD7190模數轉換芯片。該芯片是一款適合高精密測量應用的低噪聲完整模擬前端,可以配置為兩路差分輸入或四路偽差分輸入,最高輸出速率為4.8kHz,最高無噪聲分辨率為22.5位,失調漂移為5nV/C。本系統中對于單片機的要求并不高,選用STC12C5A60S2單片機作為控制器。該芯片采用貼片封裝、體積小,有利于系統集成。

二、電源電路設計

雖然開關電源具有體積小、效率高等特點,但是存在一定的紋波并且開關噪聲較大,因此系統采用線性電源,線性電源先將交流電經過變壓器再經過整流、濾波、電壓反饋調整得到高精度穩定的輸出電壓。實驗室現有±12V線性電源,由于電路中的芯片還需要±9V和+5V供電電壓。因此采用線性穩壓器件調整得到所需電壓值,TPS7A4901是一款輸入為3V至36V超低噪聲,輸出可調的低壓降線性穩壓器,結合TPS7A3001調節接入電阻使得輸出為±9V,LM7805為輸入5V至18V固定輸出5V穩壓器。在芯片兩端添加小電容,減少噪聲干擾,達到濾波。為了減小模擬電源與數字電源間的相互干擾,采用電感將它們隔離開,并通過0Ω電阻將模擬地與數字地相連。

三、實驗測試

將扭簧表和測頭固定,工作臺一端同時擠壓扭簧表和測針,即可在相同條件下用扭簧表的實測位移和測頭讀值表示當前位移變化。測試原理如圖2所示。測試數據如下表1所示。最小二乘法擬合出直線方程:y=kx+b,經計算k=0.023854,b=1538.757即分辨率為0.02464μm。

四、結論

第9篇

關鍵詞:瀝青;路面設計;問題

1 設計理論

當年,殼版石油公司研究所進行了以下的研究:

計算方法方面,編制了BISTOR和BISAR電算程序,解決了多層體系應力、應變的計算問題;對瀝青混合料抵抗疲勞和永久變形的性能進行了研究;在室內環道和野外現場進行了新的試驗,尤其在高溫時(60℃)層狀體系理論的適用性得出了肯定的評價,據此提出了1978年版的設計方法。

1.1 路面模型

1.1.1把路面層體系,面層材料土基場面彈性模量E和泊松比μ表征,除土基μ用0.35外,各層材料μ用0.25,材料性質假定為均質的、各向同性的,各層水平方向為無窮大,土基在向下的深度方向也為無限,但一般以三層連續體系為基礎。

1.1.2荷載圖式采用一個圓或幾個圓上作用著垂直和水平的均布荷載,荷載以雙輪組單軸載100kN為標準軸載,以BZZ―100表示;單輪傳壓面當量圓直徑δ為21.3cm;兩輪中心距為1.5倍當量圓直徑;至于層間接觸,假定為多層彈性體系層間完全連續接觸條件。

這就從根本上改變了過去所有設計方法都把雙輪當作當量的單圓的不合理規定,使荷載圖式開始接近實際。

1.2計算機計算

1968年開發的BISTOR程序可計算多層連續體系單軸或雙軸垂直荷載下任一點的應力、就變和位移,包括主應力、主應變及其作用方向。1973年開發的BISAR程序擴大到可計算n層垂直荷載和水平荷載或綜合荷載,層間接觸條件也擴展到完全連續、完全滑動、或部分連續部分滑動三種狀況。對瀝青面層處于高溫狀態時,試驗證明當處于短促荷載時間及出現較小的變形時,即使溫度高達60℃,如果瀝青面層的性質以勁度模量表示,則按彈性層狀體系理論計算結果與用非線性彈性或粘彈性理論所得結果并無差別。

2 設計指標

高速公路、一級公路、二級公路的路面結構。以路表面回彈彎沉值、瀝青混凝土層的層底拉應力及半剛性材料層的層底拉應力為設計控制指標;三級公路、四級公路的路面結構以路表面設計彎沉值為設計指標。對重載交通路面宜檢驗瀝青混合料的抗剪切強度。

3 設計參數

3.1交通分析

標準軸載統一采用BZZ-100標準,推薦以軸載比表達的換算公式;仍采用彎沉等效、層底拉應力等效原則,根據多層彈性理論分析彎沉、拉應力與軸載P或π、δ因素的關系。結合公路上實測不同軸載汽車的彎沉對比、疲勞試驗、容許彎沉公式以及直槽測試拉應變驗證提出。路面剛度用彎沉值控制,Ld=Lo=LR/AT,其中Ld為設計彎沉值;LR為容許彎沉;AT為相對彎沉變化系數;Lo為竣工驗收彎沉值,且:

式中,Ld為設計彎沉值(0.01mm);Ne為設計年限內一個車道上的累計當量軸次(次/車道);As為面層類型系數;Ac為公路等級系數;Ab為路面結構類型系數(半剛性基層瀝青路面取1,柔性基層瀝青路面取1.6)。

強度驗算中要求路面的疲勞彎拉應力σm≤σr,其中σr為容許拉應力,它是通過σsp和Ks來確定的,σsp為在規定條件下通過劈裂試驗獲得的材料劈裂強度,也稱為間接抗拉強度;Ks為抗拉強度修正系數,是根據瀝青混合料或半剛性材料疲勞規律并考慮間歇時間、裂縫傳播速度、交通量折減和橫向分布等室內外試驗條件的差異等因素經修正而得出的,且:

式中,Ag為瀝青混合料級配系數(細、中粒式取1,粗粒式取1.1)。

3.2材料設計參數

材料的模量是表征材料剛度特征的指標;抗拉應力是反映材料強度的指標,這兩個重要指標均是以靜態參數為前提。彎沉拉應力指標均用靜態抗壓回彈模量計算,抗拉強度σsp由圓柱體劈裂試驗來測定,而靜態抗壓回彈模量E靜壓又是通過σsp來確定。以瀝青層或半剛性結構層的層底拉應力為設計或驗算指標時,應在l5℃條件下測試瀝青混合料的抗壓回彈模量。路面厚度計算時,引用了綜合彎沉修正系數:

式中,Ls為實測彎沉值;Eo為土基回彈模量值;P為標準車型的輪胎接地壓強(MPa);δ為當量圓半徑。該經驗公式是通過試驗路段的結果回歸分析得出的。

4存在的問題

在瀝青路面設計中應該注意以下一些問題:從設計角度看,材料的低溫抗裂性沒有得到完全體現;瀝青混合料的參數取值有一定的局限性,其回彈模量和抗拉強度應力都是在靜態作用的前提下得出的,而實際道路行車時所受的荷載都是動態的、隨機的,與實際有較大出入;對路面在反復荷載作用下出現的車轍問題,不能從設計角度加以控制;

對設計彎沉值計算中所用到的基層類型系數考慮不全面,取值范圍較單一;半剛性基層Ab取值為1、柔性基層取值為1.6,在l和1.6之間的區間較寬;由于對基層的半剛性與柔性并沒有給出明確的界定,彎沉綜合修正系數F存在一定的缺陷,因為F經驗公式是對試驗路段的試驗結果的經驗總結,通過數據回歸分析而得出的,由于試驗路段本身在施工條件、方法、環境等方面的特殊性,與實際有一定的差距,再加上路段的代表性、地理位置、人為因素等都會影響F的真實性;對瀝青路面的低溫開裂和車轍問題。在設計階段考慮不足。

5解決措施

為解決上述問題,使設計方法更接近于路面的實際使用情況。下面擬從設計理論、設計標準、材料參數等方面提出一些改進建議。

5.1設計理論

現在的路面設計程序。如HPDS2006等,通過電算計算雙圓垂直均布荷載作用下的多層彈性層狀連續體系的精確解,取代了過去有一定誤差的查圖法,但多層彈性層狀體之間,并不一定是完全連續的,對于絕對光滑或部分連續光滑沒有考慮,即使考慮也無法計算出精確解,故與實際結果有一定誤差,所以不妨參考引進SHELL設計法中的BISAR程序,可以計算N層體系作用垂直和水平荷載層間的三種狀況。

5.2設計標準

5.2.1以彎沉為設計標準,拉應力驗算只是靜態作用,沒有考慮路基的垂直壓應變ξz與重復荷載作用次數N之間的關系,這正是控制車轍的一個主要因素故應加以考慮,把該推薦指標引入設計中:

5.2.2瀝青面層只是以層底拉應力為驗算指標,而水平拉應變ξθ沒有體現出來,拉應變正是瀝青面層疲勞開裂破壞的一個重要指標,而ξθ與N有關系,故可以引入關系式ξθ=CN,C為混合料的類型系數,它與模量有關;

5.2.3對于其他整體性基層的設計,我國也只是用拉應力驗算,故在此也應引入水平拉應變及與荷載次數N之間的聯系;

5.2.4路面表面的總變形主要是由于表面層在重復荷載的作用下引起的,表面上看就是車轍,而該指標在我國設計方法中根本就沒有涉及,更談不上控制了,所以可以引入國外設計法中的表面總變形指標h,計算如下:

式中,hi為第i層瀝青混合料層的厚度;σi為行駛的車輪下瀝青層內的平均應力,σ=mp;P為接地壓力;m為平均壓力與輪載接地壓力之比;Smη為瀝青粘滯部分的勁度,Smη=3η/W to;η為粘度;w為車轍通過次數等效數,且W=C2A2N;to為一次通過的時間;C2為系數,每條車轍的總輪數與每個車道總軸數之比,一般等于1.4;A為依賴于輪載譜的比例系數;Cm動載修正系數。另外,車轍深度RD按下式計算:科式中,Δh為基層的永久變形;Δδo為土基的永久變形;

5.2.5在溫度急劇變化的地區,由于溫度應力超過瀝青層抗拉強度而引起瀝青面層的低溫縮裂,與荷載無關,我國以抗拉強度σ≤σr,進行控制,但如果材料溫度應變過大也會產生開裂,所以也應考慮用水平拉應變ξθ來輔助控制。

5.3材料參數

對于材料的回彈模量,我國主要采用靜態下的抗壓模量靜。如在路基土回彈模量值測定中用承載板法測定結果,只能是靜態值,而沒有采用動態彎沉儀或測震儀測定其動態回彈模量,所以應考慮運用動態儀測定,以使設計參數更切合實際。

6結語

相關文章
相關期刊
主站蜘蛛池模板: 国产高清在线精品一区二区 | 91社区视频| 国产一区二区成人 | 久久久久国产精品免费免费 | 李宗全集在线观看网站 | 激情综合网色播五月 | 婷婷四房综合激情五月性色 | 国产区综合 | 欧美成人一区二区三区在线视频 | 精品精品国产高清a级毛片 免费a级毛片在线观看 | 国产成人久久精品 | 久久久久夜夜夜精品国产 | 99精品视频在线成人精彩视频 | 澳门永久av免费网站 | 婷婷激情五月综合 | 久青草视频在线播放 | www.五月| 久久成人免费网站 | 国产精品视频网址 | 真人视频一级毛片 | 丁香六月五月婷婷 | 欧洲精品码一区二区三区免费看 | 欧美另类老女人 | aⅴ一区二区三区 | 久久国产午夜精品理论篇小说 | 网络色综合久久 | 黄色成人小电影 | 精品四虎免费观看国产高清午夜 | 国产人成亚洲第一网站在线播放 | 五月天婷婷在线播放 | 在线免费国产 | 久久国产精品视频一区 | 国内国语一级毛片在线视频 | 4410影院 | 免费一区区三区四区 | 24小时最新更新免费观看片 | 九九精品久久久久久久久 | 久久综合社区 | 久久婷婷国产综合精品青草 | 777第四色| 久久国产高清字幕中文 |