時間:2023-04-03 09:56:13
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇橋梁設計論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
1三維數字化設計發展與現狀
1.1計算機輔助設計系統發展從1963年美國MIT機械工程Coons,首次提出了計算機輔助設計系統(CAD)概念開始,軍工、航空航天以及精密制造業等領域就開始了CAD的研究與開發。到20世紀80年代,CAD技術開始走向成熟,并廣泛應用于商業領域,開始出現在PC終端系統中。1989年,PTC公司推出Pro/Engineer產品,用參數化的特征設計為CAD三維設計建立了新的標準。此后,隨著全球經濟的發展,三維CAD設計開始普遍應用于航空航天、船舶、汽車及精密儀器制造業等領域[1-3]。
1.2三維設計應用在國內外的基礎建設領域,三維設計技術也正在蓬勃發展,其中在水利水電、公用與民用建筑等行業已經取得較為廣泛的應用,初步實現了二維設計向三維協同設計的轉換。如圖1所示。圖1水電廠房剖切視圖對于公路工程,特別是橋梁設計領域,CAD設計系統的發展相對較為緩慢,大多還處于二維階段,或者應用其他主流的三維CAD平臺對橋梁結構進行三維展示,中國交通部公路科學研究所研發的橋梁三維造型系統Bridge3D,嘗試了采用參數化技術進行橋梁結構外觀造型設計。但是,相對于制造行業的參數化、變量化的三維CAD設計系統差距還很大[4-5]。
2基于BIM技術的工程設計概念
2.1BIM技術定義建筑信息模型(BuildingInformationModeling,簡稱BIM)技術和理念由AutoDesk公司于2002年率先提出,它是通過數字化技術,在計算機中建立一座虛擬的建筑,一個建筑信息模型就是提供了一個單一、完整、邏輯的建筑信息模型[6-7]。BIM是貫穿在工程整個生命周期中,使設計數據、建造信息及維護信息等大量信息保存在BIM中,在建筑整個生命周期中得以重復、便捷地使用,如圖2所示。
2.2BIM技術在橋梁工程中的延展BIM的發展是始于建筑行業,但其內涵及外延早已超出了模型的范疇,也延伸出了建筑行業,甚至覆蓋了整個工程建設行業。對于橋梁工程而言,可以參考美國國家BIM標準,對橋梁信息模型(BIM)闡釋如下:(1)一個橋梁工程物理和功能特性的數字化表達。(2)一個共享有關橋梁建設項目所有信息的資源數據庫。(3)一個分享有關橋梁工程的信息,為該工程從概念開始的全生命周期的所有決策提供可靠依據的過程。(4)在項目不同階段、不同利益相關方,通過在BIM中寫入、提取、更新和修改信息,以支持和反映各自職責的協同作業,如圖3所示。圖3BIM技術支撐的工程范疇
3三維數字化設計與二維設計對比
對于橋梁設計而言,采用BIM的理念與傳統CAD相比,改變的是整個設計流程與設計方法。(1)從線條繪圖轉向構件布置。(2)從單純幾何表現轉向全信息模型集成。(3)從各工種單獨完成項目轉向各工種協同完成項目。(4)從離散的分步設計轉向基于同一模型的全過程整體設計。(5)從單一設計交付轉向工程全生命周期支持。對于橋梁設計行業,采用BIM技術不僅僅意味著效率與質量的提升,更重要的是設計方掌握了工程項目最核心的信息模型資源,不僅向業主方提供工程設計服務,而是向全壽命周期內各個工程參與方提供高附加值的服務與咨詢,使工程項目的潛在價值向設計階段前移[6]。
4基于BIM技術的橋梁三維設計技術
4.1信息需求的系統分析了解橋梁工程對三維設計技術的需求是建立三維設計系統的基礎,雖然其他行業的三維設計技術已經較為成熟,也有了成功的工程案例,但是橋梁工程建設對三維工程信息的要求有自身的特點,并不能將其他行業的工程需求照搬過來。因此,需要重新根據橋梁設計、施工與管理的特點分析其對工程信息的實際需求。只有得到各個工程參與方對三維信息的需求,才能使三維信息模型發揮其在工程建設中的核心數據平臺的作用。
4.2信息模型的參數化建立方法三維設計技術的核心是信息化的三維模型,通過前期分析得到各方的信息需求后,如何建立賦含上述信息的三維模型就成為關鍵。抽象化、變量化、參數化的設計技術是一種高效、直接和便于修改的信息化模型建立方法,該方法的核心思想是把工程項目中具有特征變化的圖元要素的特征值抽象為某個函數的變量,通過修改變量值,或者改變函數實現算法,就能夠獲得賦含各種信息的模型。主要工作在于尋找各類要素的特征變量及其與整個模型的邏輯函數關系[8-10],橋梁三維模型如圖4所示。
4.3CAD-CAE信息共享技術橋梁設計的重要特點是結構計算分析在設計中占有極其重要的位置,計算分析結果決定了主要構件尺寸與構造形式,橋梁結構計算工作量在整個設計流程中占據較大的比例,對于復雜橋梁甚至是控制性的節點工作。因此,實現設計平臺與計算平臺的信息共享乃至無縫結合,對提高設計效率有著積極的作用。
4.4數字化工程的交付方式與標準數字化虛擬工程移交是三維設計發展的必然結果,因為傳統的二維圖紙載體已經被全信息模型所取代。基于BIM技術的橋梁工程設計產品是一個包含了各階段、各參與方所需信息的核心數據模型,這就需要針對不同信息接收方制定不同的產品交付方式與標準,交付方式與標準的確立,標志著三維設計階段轉向了三維信息化的施工與運營管理階段。
4.5一體化協同設計與管理技術從單點、離散式的分布設計轉向基于同一模型的一體化協同設計是BIM技術的重要標志,對于項目管理的效率與質量有著質的提升。同時,協同設計不僅僅指設計方內部的流程與設計過程管理,還包括設計產品交付、進入施工與運營階段后的協同信息交流與管理,甚至可以延展到工程全壽命周期內的各個參與方的協同工作。只有掌握了一體化協同設計與管理技術,才能發揮三維數字化設計對工程全壽命周期的技術支撐作用[7]。
5三維數字化設計發展存在的問題
(1)全行業對三維數字化設計的認識有待統一。目前整個交通建設行業的三維設計剛剛起步,政府主管部門、工程業主單位、設計單位與施工單位等各方對三維設計的理解與需求是不同的,而以上各方都應該是三維設計的參與方,也是受益方。因此,在交通行業發展三維數字化設計需要全行業對其有一個統一的認識。(2)從設計單位看,意味著設計習慣、工程流程與管理體系的再造。二維設計向三維設計的轉變,必然是一個緩慢的過程,大干、快上不符合技術發展規律。在三維設計起步階段,由于設計人員的技術不熟練,設計系統不夠完善,管理體系還不健全,可能會導致工作效率降低。因此,需要在工作中尋找發展與穩定生產的平衡點,這是一個不斷摸索、發展與調整的實踐工作。(3)從整個交通建設流程看,各個環節的發展節奏不一致。目前交通行業三維數字化的工作與重點集中在設計階段,大部分的實踐工作由設計院承擔。但是,設計階段只是工程建設的中間環節之一,其設計基礎數據的獲得要依靠前期的規劃與勘測方,后期產品要交付于審查與施工方,如果各個環節發展脫節,就難以發揮三維數字化的優勢。所以,三維數字化技術的變革比當年“甩圖板”工程涉及的范圍更廣,難度也更大。
6結束語
在其他許多國家的抗震規范中,也或多或少地采用了這一設計原則,即便如此,各國規范在具體的設計程序上絕大多數仍堅持以安全設計地震為準的單一水平設計手法,并認為第一設計水準的要求自動滿足[3]。近年來,專家已建議對兩個設防水準的地震力都要進行設計,這在一定程度上更加保證了橋梁結構的抗震安全性,也是未來橋梁抗震設計的一個發展方向。理念的提出基于性能的抗震設計思想是一個比較抽象的概念,它沒有明確的力的大小的物理意義,也沒有單純的材料強度或結構位移的具體量化結果。因此,基于性能的抗震設計思想不能比較明確的用一個參數來衡量結構的抗震性能,它是對以往的結構的響應的一個綜合考量,結構的性能往往與結構的受力大小、強度或位移,耗能能力以及結構的功能有關,更為直接地反映的是為滿足人們的正常使用要求或結構功能性或安全性的性能綜合考量。因此,對于不同的需求和功能要求,同樣一座橋梁的抗震評估結果將有所不同[1]。基于性能的抗震設計可以簡要的概括為,用總少的投入,建總可靠的橋梁。正如著名的地震工程學家胡聿賢先生所講,工程抗震不僅與工程技術有關,而且與社會經濟密切相關。基于性能的抗震設計思想是橋梁抗震設計思想發展的一種必然趨勢,對于人類進步和社會發展都將起到積極的作用。基于性能的抗震設計思想是一個全新的思想體系,目前已經取得了一些研究成果,但到廣泛的應用還有一定的距離,甚至目前都沒有形成完全統一的概念。但這并不妨礙基于性能的設計思想的進一步完善。
設計方法的體現
傳統的橋梁抗震設計思想即對某一性能目標進行比較,如對結構的地震響應力、地震位移、結構耗能等單一性能參數進行考慮。從嚴格意義來講,這并不能反映結構的真實安全性能。而基于性能的抗震設計,其目標即為業主的期望目標或結構性能,包括地震動性能目標和結構抗震性能目標。基于性能的抗震性能目標,是一個對傳統的結構的性能的一個綜合考慮,因此,各單一結構性能之間的相互關系顯得十分重要而又相互制約,如連續梁橋梁結構的梁端位移與墩底彎矩即為相互制約的關系,基于性能的設計思想即要從這兩者之間找到一個平衡點,以達到各單一性能的充分而平衡的發揮。同時,基于性能的抗震設計思想也要對結構的經濟指標提出要求。人們總是希望結構設計以社會效益和經濟指標為目的,基于性能的抗震設計思想即在對結構進行抗震設計時,對橋梁結構遭受地震破壞所造成的損失、維修成本、社會影響等進行綜合評估,這也是基于性能的抗震設計思想所必須考慮的一個關鍵所在。基于性能的橋梁抗震設計是一個涉及多門學科的綜合型研究領域,需要對多個領域,如地震學、橋梁工程、經濟等都要有一定程度的認知才能進行基于性能的抗震設計,這也對橋梁抗震設計工程師提出了更高的要求。
關鍵詞:橋梁鋼結構整體設計
引言
中國鋼結構橋梁的發展,近年來取得了驕人的成績,南京三橋、蘇通大橋、昂船洲大橋的建造,表明在大跨徑橋梁上鋼結構的優勢越來越明顯。橋梁是為滿通功能的建筑物,現代橋梁鋼結構由結構鋼加上單元經焊(栓)連接組成為復雜的受力系統,有明確的承載安全和服役耐久性要求。
一、鋼結構橋梁整體設計理念概述
鋼結構的特點是質量輕,強度高,并且具備其抗壓以及抗拉等相關優點,對于混凝土結構而言,其外觀更為直觀,強度等級更高。在我國,鋼結構橋梁應用十分廣泛。因為作為鋼結構的施工而言,其施工周期短。鋼結構橋梁主要應用在:①城市立交橋段,尤其是交通要道處,如果采用混凝土橋,必然增加施工周期,對于現場交通不能較好地維護。②大跨徑海、江、河橋梁(長江大橋、杭州灣大橋等),因為大跨徑的要求下,只能考慮鋼結構,因為如果采用混凝土結構,根本滿足不了大跨徑要求。
1.1鋼結構整體設計目標我國橋梁鋼結構的設計使用年限為100年,與國際標準(BS5400,EUROCODE)基本一致。完整性設計的目標是確保結構在使用年限內的可靠與安全。橋梁鋼結構的完整性設計由荷載、材料性能、結構細節構造、制造工藝、安裝方法、使用環境及維護方式等多種因素所確定。設計除對結構、構件連接及構造細節按常規考慮強度、剛度要求外,尚需對損傷與損傷容限、斷裂與抗斷裂作出評定。
1.2鋼結構損傷及損傷容限鋼結構從材料加工過程到服役期不可避免的會在內部和表面形成和發生微小缺陷,在一定外部因素(荷載、溫度、腐蝕等)作用下,這些缺陷不斷擴展與合并形成宏觀裂紋,導致材料和結構力學性能劣化。對橋梁鋼結構而言,完整性和損傷是相對應的,損傷程度將會對結構的完整性帶來影響,損傷極限則是結構的失效。而損傷容限是指鋼結構在規定的使用周期內抵抗由缺陷、裂紋或其他損傷而導致破壞的能力。損傷容限概念的使用是承認鋼結構在使用前存在有初始缺陷,但可通過結構完整性設計方法評判帶缺陷或損傷的鋼結構在服役期限內的安全性。
國內橋梁鋼結構因損傷導致局部破壞的實例近幾年時有發生,結構損傷構成了對橋梁安全與耐久最大的威脅。在引起設計者對焊接結構損傷、損傷擴展以及結構系統失效過程關注的同時,也引發了人們對如何保證橋梁鋼結構系統整體完整性的思考。
二、橋梁鋼結構整體設計策略
2.1橫向抗傾覆穩定設計鋼結構的橋梁普遍比較輕而且強度非常高,然而,在小半徑以及多車道設計時,其橫向抗傾覆是當前研究的熱點內容。早前的橋梁施工中,由于設計原因,導致在施工過程中或者橋梁使用過程中發生橋體傾覆。因為連續鋼梁的半徑比較小,所以相對而言,其跨度顯得較大,如果再加上橋面寬于鋼梁,這一必定顯得活載不是最優,弄不好橫梁外側支座受力增大,而內側支座出現不受力,這樣橫梁受力極其不均勻,發生梁體的傾覆。在設計過程中,通過合理的計算,來設計橫梁的偏心受力情況,這樣即可滿足橋梁的荷載要求,也能似的橋體均勻受力。在橫梁處采取灌砂措施,并在滿足規范的條件下,增加多車道時的橋梁整體穩定度。
2.2焊接結構完整性設計要點橋焊接結構的完整性設計是保障橋梁整體穩定性的重要因素,其焊接的接頭形式因受力的不同而各有差異,其接頭部位的應力作用導致了母材結構以及受力性能的不同,同時,在焊接過程中不能100%消除應力,焊接應力通常導致焊接接頭的變形,造成焊接接頭形成大量缺陷,不能滿足橋梁整體性設計要求。所以在橋梁整體設計中,必須考慮焊接接頭的設計,在滿足相干規范的前提下,必須做到:①因地制宜地選擇形式,并通過焊接性檢測要求來獲取靜力和疲勞等級,來決定焊縫相關形式。②在焊接設計中,必須詳細設計其關鍵細節,達到焊接中受力均勻,盡可能降低應力。③在設計中必須考慮焊接檢測相關要求,必須以無損檢測等相關控制指標來檢測焊縫質量。2.3加勁肋設置加勁肋是在支座或有集中荷載處,為保證構件局部穩定并傳遞集中力所設置的條狀加強件。加勁肋的設計,通常很多人都認為這方面是可有可無的,實際上必須通過設計計算才能決定是否加勁肋。加勁肋與否,是有腹板的h0/δ的值來決定。如果確定需要加勁肋,則優先考慮豎向加勁肋,并且其設置距離由腹板厚度以及相關剪應力來決定。當豎向加勁肋仍然不能滿足要求時,可設置水平加勁肋,水平加勁肋是豎向加勁肋的補充形式。加勁肋的設置是因為原有構件截面的不足而用來增強抵抗彎矩和剪力的,因為設置加勁肋可以縮小原構件截面大小,從而有效的降低用鋼量,壓縮成本,所以在工程中,一般設置在原有構件上起到增強抵抗彎矩和剪力的作用。
2.4鋼箱梁橫梁設計當橋梁主道設計過寬時,必須優化車道鋼結構寬箱梁,在設計中,重點滿足其豎向計算要求,對于橫梁的跨徑,需要從支座間雙懸臂簡支梁的計算中得知,在支座處可采取豎向加勁肋相關措施,當豎向加勁肋不能滿足要求時,考慮橫向加勁肋,其計算措施與縱向計算措施相仿。
2.5施工人孔的設置橋梁的整體設計中,其不可忽視的一環是人孔的設置,通常情況下,人孔是為了方便施工,在橋梁箱梁頂板和腹板上開設。頂板施工人孔的具置可設置在1.5跨徑處,而腹板的施工人孔的具置必須設置在應力相對薄弱的地方,比如簡支梁,其腹板施工人孔可設置在跨中,而連續梁,必須精確計算剪力,選取剪力最小處。有時候人孔的設計不止一個,不能將所有人孔分布在相同斷面,采取錯開設置。當應力較大的地方必須加設施工人孔,必須采取加強措施。
2.6結構內力計算結構內力計算是以邊孔采用單懸臂,中孔采用簡支掛梁作為結構的計算模式。將橋梁縱向劃分為多個單元,并對每個單元截面進行編號,然后進行項目原始數據輸入。輸入的數據信息有:項目總體信息、單元特征信息、預應力鋼束信息、施工階段和使用階段信息。按全預應力構件對全橋結構安全性進行驗算,計算的內容包括預應力、收縮徐變及活載計算。橋臺處滑動設支座,橋墩處設固定支座,碇梁與掛梁間存在主從約束,掛梁一端設置固定支座,另一端設滑動支座。牛腿計算是對預先設計好的牛腿尺寸和配筋分4個步驟進行驗算:①牛腿的截面內力。求出截面內力后對各種危險截面進行強度校核;②豎截面驗算。按偏心受壓桿件驗算抗彎和抗剪強度或按受彎桿件驗算強度;③最弱斜截面驗算。求得最弱斜截面位置后,按偏心受拉構件驗算此斜截面的強度;④45°斜截面的抗拉驗算。:
三、結語
我國基礎建設的加快,帶動了橋梁技術的長足發展,在當前形勢下,橋梁鋼結構的整體應用也十分廣泛,主要是在設計過程中的優化,才能確保橋梁鋼結構的整體性、穩定性。必須從整體性角度出發,全面分析橋梁受力情況,加強焊接形式的優化設計,才能保障橋梁鋼結構的整體質量。
參考文獻:
[1]中華人民共和國鐵道行業標準.鐵路橋梁鋼結構設計規范(TB10002.2-2005).北京.中國鐵道出版社.2005.
1隔震設計簡介
1.1隔震設計的概念和原理
橋梁隔震設計就是利用隔震器,使橋梁獲得一定的水平支承,使得橋梁在水平方向上的固有周期變長,并且利用阻尼器增強隔震體系的阻尼效應,最終降低地震損害的一類橋梁工程的減震設計,旨在保護橋梁工程所有結構的整體效果。且隔震設計屬于橋梁工程抗震設計中比較新穎的減震方式,把隔震設計使用于橋梁設計中能夠有效降低地震造成的損害,然而并不能完全阻止地震災害。過去,通過提升橋梁工程的強度抗以及變形能力來提升橋梁的抗震能力,和以往不一樣,隔震設計的特點就是加裝了一個隔震裝置,達到降低橋梁結構與水平地面關聯性的目的,當有地震發生時,橋梁結構的反應加速度明顯比地面的加速度高,所以橋梁結構構件很難被破壞。另外,還在橋梁設計中使用了阻尼設計,這樣能夠消耗地震產生的能量,最終作用在橋梁構件上的力減小了。
1.2隔震設計的特點
在設計橋梁抗震的過程中,要求在符合相關標準的條件下,通過隔震裝置,使橋梁結構周期得到延長,且消耗地震產生的能量,使橋梁結構的響應減小。隔震設計通常具有以下特點:有足夠的豎向剛度以及強度來支撐橋梁上部結構的所有重量;提高地震時橋梁結構的穩定性;引入隔震設計,能夠分散減小后的地震力于橋梁下部結構支座間的大小分布,旨在保護橋梁的基礎和橋墩。出現強烈地震時,能在一點程度上延長橋梁結構的自振周期,降低地震輸入能量的能力;比較于以往的非隔震橋梁,有強地震發生后,更加容易對隔震裝置進行更換,同時減少維修的費用及時間。以往在橋梁抗震加固工作上會花更多的時間和費用。在橋梁的結構橫向地震反應中引入隔震技術,能夠調節其橫向剛度,所以能夠改善結構的平衡作用,有效減少地震力。進行水準地震的設計時,橋梁上部結構的隔震能夠消除或者解決橋梁下部結構彈性超過的問題,在不容易修復的位置,比如一些埋置的橋墩以及橋墩的基礎,可減少這些不明顯部位的非彈性變形問題的發生。在結構橫向地震反應中引入隔震技術,能夠調整一定的橫向剛度,所以能夠改善結構的平衡,有效較少地震力。引入隔震體系后,在一樣造價條件下能夠得到比以往抗震設計更好的抗震性能,比如降低墩柱延性需求,保護墩柱等。在功能得到正常使用情況下,使用的隔震支座因為溫度、徐變等變形產生的抗力非常小,這或許能夠實現伸縮縫的減小。
2橋梁設計中隔震設計的運用
2.1運用隔震設計的條件
根據橋梁基礎周邊地基及結構等條件而言很多橋梁都可以引入隔震設計。然而部分橋梁并不可以,所以要分析詳細的地基和結構條件,判斷是否可以在此橋梁中引入隔震措施。可以引入隔震設計的橋梁需要滿足的條件是:橋梁周邊的地基基礎良好,這樣發生地震時才會穩定;橋梁下部結構剛性好且橋的固有周期不長的條件。這2個條件確保實行隔震技術后,橋梁體系可以達到長周期化的目的,最終實現地震力的降低。如果橋梁下部結構剛度比較強,通過橋梁系統的固有周期,其固有周期可以長達不采用隔震裝置的2倍,如果橋梁的上、下部結構的固有周期區別很大,那么上部結構和下部結構之間就沒有大的藕聯振動效應產生,通常橋面運動才可有效反映隔震裝置的減震能力。以下條件下的橋梁不適合引入隔震設計:橋梁的下部結構剛性不強,且固有周期長的橋梁;置于較柔的場地,周期長會出現共振現象;橋梁基礎的地荃不牢固,發生地震容易搖晃的橋梁。
2.2橋梁設計中的隔震設計
(1)隔震裝置的設計。橋梁隔震設計的第一步是隔震裝置的設計,要想達到預期的隔震效果,隔震裝置的設計就要有一定的剛度和能量吸收能力。進行橋梁隔震設計過程中,可以利用隔震裝置降低橋梁結構的慣性力。所以需要設計出隔震效果良好的阻尼器和隔震器。通常情況下通過彈性反應譜法設計的隔震要不斷更新和優化。在隔震設計過程中,要嚴格控制其隔震裝置的力學性能。(2)細部構造的設計。在進行隔震設計時橋梁附屬結構的功能非常大,橋梁附屬結構通常包括限位裝置、防落梁裝置、伸縮縫。大量的地震調查和動態時程研究表明:這些結構屬于支撐橋梁結構的動態響應和振動隔離效果的主體。然而大部分設計人員不重視甚至忽視橋梁的細節結構,所以,進行細節結構設計時,要求設計人員注意加強設計,盡力提高橋梁的抗震能力。
2.3隔震設計的合理運用
在不同水準地震條件下,一方面要明確結構構件在抗震中起到的作用和結構的預期性能。另一方面,在不同的水準地震作用的情況下,結合結構的預期性能設計人員才能知道該如何去做。想要實現這個目標,就要充分利用設計人員的實踐經驗,充分掌握在地震作用下的結構性能,最后完成科學合理的設計,詳細的構造細節和合理的構造舉措,并不是通過復雜的分析計算而得出的。所以,進行隔震技術設計時,要充分掌握整個橋梁系統的抗震傳力路徑,通過有效的細節構造措施的實行,保證在地震作用下的情況下隔震裝置可以正常發揮關鍵作用。
2.4隔震設計的運用
中出現的問題目前我國的隔震設計規范還不夠全面,同時經驗積累不足,特別是在橋梁的構造細節和措施上,構造細節和措施的不科學,會影響減隔震裝置的正常發揮。大跨橋梁結構的應用是長期發展的結果,但粘滯阻尼器在世界橋梁中的使用時間很短,同時投入使用的過程中部分廠家粘滯阻尼器經常有漏油等事故發生。迄今為止,我國還沒有更加完善的產品標準、設計規范及檢測標準。這點使得隔震設計造我國的廣泛使用,再者,部分不符合要求的產品被引入橋梁結構的設計,存在一定的安全隱患,如果有地震發生,就會對橋梁產生嚴重的影響。所以在使用粘滯阻尼器的過程中,要嚴格控制產品的質量檢測,保證產品參數符合設計的標準;再者,要著重檢測產品的耐久性能、疲勞性能等特性,而且要及時檢測和保養橋梁的阻尼器,如果有問題出現要馬上作維修或者更換工作。所以,要求相關部門盡快制定科學合理的檢測標準和產品標準。要想保證在地震作用下隔震支座能夠有效發揮作用,且可以對隔震支座作一定的變形,就要保證足夠的位移空間。所以要隨時關注防落梁措施、伸縮縫間隙的設置等構造措施的設置。
3結束語
就目前的發展來看,我國的橋梁結構設計的傾向如下:比較注重強度而忽視耐久性;重視強度極限而忽視使用極限;重視結構的建設而忽視結構的維護,這樣的設計傾向直接導致了橋梁工程事故的不斷發生,不利于和諧社會的發展。我國的橋梁設計理論和結構構造體系還有諸多需要完善的地方,在橋梁設計過程中,尤其在橋梁施工和使用期安全性上改進的空間還是比較大的。在結構設計中首先要選擇科學合理、經濟的方案,其次是結構分析與構件和連接的設計,還要運用規范的安全系數或可靠性指標給結構的安全性以最大的保障。
2我國現代橋梁結構設計的注意事項
2.1對于結構的耐久性問題要重視
在我國的橋梁建設過程中,很多時候都缺少建設前期所需要準備、視察及考證等工作,這是一大問題。周圍的環境會在很大程度上影響到橋梁的建設和使用,不僅包括由于車輛超載而出現的疲勞情況,還包括橋梁結構本身的老化和損傷。我國從上世紀九十年代有些研究者就針對橋梁結構的耐久性進行了研究,但多集中在橋梁的材料及統計等方面,而對橋梁結構及設計的研究卻是忽視的,還缺少以設計及施工人員為出發點改善橋梁的耐久性。設計人員所關注結構的計算方法比較多,而容易忽視總體構造的設計和一些細節處的把握。結構耐久性的設計應該有別于其他普通的結構設計,就現階段而言,我國橋梁結構的耐久性研究應轉變為定量分析而不是傳統的定性分析。諸多研究實踐表明一座橋梁是否能夠安全使用,結構的耐久性發揮了很大的作用,經濟性也包含在其中。
2.2充分重視橋梁的超載問題
超載會造成橋梁疲勞應力幅度加大、損傷加劇,嚴重的情況下還可能引發結構破壞事故。橋梁的超載不僅會引發疲勞問題,還可能造成橋梁內部損傷難以及時恢復,進而使得橋梁在正常荷載下的工作狀態產生一定的變化,將威脅到橋梁的安全性和耐久性。所以設計人員應加強分析超載所帶來的嚴重后果,最大限度的加強橋梁的穩定性。
2.3重視對疲勞損傷的研究
動荷載是橋梁結構所承受的車輛荷載和風荷載的主要方面,其會在結構內產生循環變化的應力,除了會引起結構的振動外,結構的累積疲勞損傷也是不可忽視的方面。在橋梁建設中所使用的材料實際上均勻性和連續性都不是很理想,諸多微小的缺陷夾雜其中,在循環荷載作用下,它們會不斷發展、合并進而形成損傷,最終形成宏觀裂紋。一旦宏觀裂紋沒有得到很好地控制,就會產生材料、結構的脆性斷裂。疲勞損傷在初始階段被察覺的可能性比較小,所產生的嚴重后果卻是毀滅性的。所以應該加強疲勞損傷的研究工作。
2.4積極借鑒國外的經驗和成果
我國橋梁設計中存在結構使用性能差、耐久性和安全性差等諸多問題,這和現階段我國的施工質量和管理水平不高是分不開的,但問題已然存在,并且在短時間無法得到有效解決,設計人員對此問題要有一個清醒的認識,在設計時對上述問題充分考慮到,運用恰當的設計方法、恰當的安全系數使橋梁的使用性能達到要求的標準,這才是設計的關鍵。尤其是橋梁的耐久性和安全性問題與結構體系、使用材料選擇不合理、結構細節處理不當有著千絲萬縷的聯系。針對我國設計中存在的問題應積極借鑒國外的有益經驗,PBD就是其中之一。PBD即為性能設計,涵蓋了結構設計的眾多方面,如變形、裂縫、振動、耐久性等。PBD研究不僅保證了橋梁結構在使用中的安全性,還具有很多優良的使用性能,這其中包括壽命和耐久性、耐疲勞性、美觀等。對此,我國應該積極借鑒其優良方面的性能,并結合我國橋梁設計的實際和使用過程中的具體情況來最終尋找適合我國的設計。
3對我國現代橋梁結構設計的建議
總而言之,我們在對橋梁結構的耐久性、疲勞損傷以及橋梁超載問題進行必要研究的同時,還可以把研究面放得更寬一些,諸如結構系統的可靠度、模糊隨機可靠度等,這樣做的目的都是為了加強橋梁結構設計的使用性、安全性及耐久性。下面就選擇幾個方面就行分析,希望為研究人士提供參考。
3.1結構系統的可靠度分析
結構系統可靠度分析其實不是一項容易的研究課題,具有一定的復雜性,近年來不少研究者對其從不同方面進行了研究,并且取得了一定的研究成果。例如利用系統系數,主要針對結構各種破壞水平所對應的極限狀態不同,計算系統可靠度并進行結構設計的方法;利用蒙特卡洛法應用重要抽樣技術最終將結構系統的可靠度計算出來。另外還有研究者對系統可靠度界限進行深入的研究。總而言之,在進行系統可靠度的研究上難度系數比較大,內容也包羅萬象。在研究上還是有一定的上升空間的。
3.2在役結構的可靠性評估與維修決策問題
對在役建筑結構的可靠性評估與維修決策正成為建筑結構學的邊緣學科,它既包括結構力學、斷裂力學、建筑材料科學、工程地質學等比較基礎的理論,還離不開施工技術、檢驗手段、建筑物的維修使用狀況等方面的內容。值得注意的一個方面是對于在役結構的可靠性評估的研究,經典的結構可靠性理論也可在此過程中得到更為廣泛、更有深度的進步和發展。
3.3模糊隨機可靠度的研究
模糊隨機可靠度理論研究作為工程結構廣義可靠度理論研究的重要內容,在不斷健全的模糊數學理論與方法的推動下,會得到不斷的完善和發展。
4結束語
海沽道規劃為城市主干路,規劃道路紅線寬50m。本次工程范圍為外環南路~東文南路,總長度約10.3km。沿線需跨越現狀河道4處,新建4座橋梁跨越,分別為外環河中橋、洪泥河中橋、幸福河中橋、衛津河中橋。由于規劃地鐵1號線線位與海沽道主線重合,受地鐵盾構影響的有洪泥河中橋、幸福河中橋、衛津河中橋3座橋梁。因此橋梁下部結構設計中應充分考慮與軌道交通1號線之間的相對關系,滿足地鐵盾構施工過程中要求的最小安全距離;同時對橋梁樁基采取有效的防護措施,在施工過程中進行必要的施工監測,以保障本工程的安全實施和使用。本文以洪泥河中橋為例,介紹海沽道工程受地鐵盾構影響下橋梁下部結構設計及防護措施。
2水文地質情況
洪泥河全長25.8km,設計流量50m3/s,為區管二級河道,六級航道,性質為排水,規劃上河口寬度為50m、下河口寬度為25m。現狀洪泥河上河口寬度為45m、下河口寬度為25m、兩側放坡各10m;堤岸為土質邊坡,邊坡系數為1∶2.5。河底高程為-2.7m,堤頂標高為3.2~3.6m,洪泥河常水位為1.4m,洪水位為2.5m。根據區域地質資料和勘察,本工程所在場地為第四系全新統(Q4)海相、陸相及海陸交互沉積地層。從上而下地層呈層狀分布,按成因分為8層,按力學性質可進一步分成15個亞層。該區域主要由雜填土、素填土、粘土、淤泥質土、粉質粘土、粉土組成,各層土水平方向上總體分布穩定,從上而下土質漸好。本工程特殊性巖土主要為人工填土及淤泥質土,填土土質松散,淤泥質土土質軟對橋梁樁基施工有一定影響。
3地鐵與海沽道線位相對位置關系及安全要求
3.1位置關系
海沽道道路紅線寬50m,線位與洪泥河河道斜交,角度為17°。1號線地鐵線位分為左右雙線,在洪泥河處線位間距為14.8m,每條線位地鐵盾構區間寬為6.2m,地鐵盾構區間凈距為8.6m,地鐵盾構頂埋深標高為-9~-15m之間。洪泥河中橋處地鐵與海沽道平面位置關系詳見圖1。
3.2地鐵盾構安全距離要求
地鐵1號線盾構隧道與跨河橋梁樁基相距較近,二者之間安全間距要求以及附近土層是否需要加固與施工工序有很大關系。為了盡量減小本工程擬建橋梁與地鐵1號線之間的相互影響確保工程實施的可行性,經與地鐵1號線設計單位多次溝通,由地鐵1號線設計單位對地鐵盾構施工與橋梁樁基施工之間的安全距離提出具體要求。
(1)樁基先于盾構隧道施工(方案Ⅰ):①在此工況下,橋梁樁基礎外邊緣距離盾構結構外邊緣的距離不得小于1.5m,隧道穿越時,周邊土體不需要加固;但樁基設計應考慮樁側摩阻局部損失。②為了保證橋梁樁基達到其設計強度,橋梁承臺及樁基施工完成至盾構側穿樁基的時間間隔應至少保證1個月。
(2)盾構隧道先于樁基施工(方案Ⅱ)。當盾構區間先行推進,樁基后施工,此種工況對區間隧道影響較大,橋梁樁基外邊緣至盾構結構外邊緣的最小距離不得小于4m,且周邊土體需要加固。方案Ⅰ對本工程樁基影響最小;方案Ⅱ對本工程樁基影響非常大,由于安全距離要求大,周邊土體需要加固,直接導致橋梁工程樁基不能實施。由于地鐵規劃1號線線位與海沽道線位已定,不能調整。最終經各方面溝通協調確定橋梁工程按先于地鐵盾構施工進行設計和施工,即滿足方案Ⅰ中的要求即可。
4橋梁下部結構設計
4.1橋梁下部結構設計方案的確定
洪泥河中橋橋梁中心樁號為K2+946.274,位于直線上,斜交角度為17°,采用分離式雙幅橋,左幅橋寬為25.5m,右幅橋寬為23.5m,跨徑為3×25m,梁高1.40m,結構形式采用預應力混凝土簡支變連續小箱梁結構。橋梁下部結構的設計為了盡量減少對河道的影響,減少阻水效果,通常采用排架墩。由于地鐵盾構的影響,與樁位有沖突,此橋不能采用排架墩,需特殊設計。經設計計算,采用較大跨徑蓋梁,蓋梁下設雙柱墩,墩底設承臺及樁基,樁基之間預留地鐵盾構空間,可以確保與地鐵盾構之間安全距離大于1.5m的要求,以此保證后期地鐵施工的安全性。地鐵盾構間距內樁基1.5m,地鐵盾構外側樁基1.2m,立柱采用1.8m的圓柱墩,以減少河流阻力。由于橋位與河道斜交角度較大為17°,立柱間距較大為19.425m/cos17°=20.313m,導致蓋梁截面較大,蓋梁梁高2.5m,順橋向寬度為2.0m,普通的鋼筋混凝土結構已經不能滿足計算要求,需要采用預應力混凝土結構進行設計。
4.2橋梁下部結構設計的特殊性及處理方法
由于地鐵盾構的影響,通過下部結構特殊設計,可滿足樁基邊緣距盾構邊緣距離大于1.5m安全距離的要求;但地鐵盾構施工過程中對周圍土體產生擾動,引起土體水平位移和豎向位移以及樁基受力及變形發生變化,仍有可能對橋梁樁基造成影響,因此設計及施工中采取以下措施:
(1)設計中不考慮盾構施工影響區域內土的樁側正摩阻力,對樁長進行加長設計。
(2)設計中在位于地鐵上下行之間的橋梁樁基盾構施工影響區域以上采用鋼護筒進行防護,該鋼護筒不拔出,作為永久性結構使用。
(3)根據地質報告本場地埋深約10.00m以上主要為欠固結軟土,軟土在自重及其它外荷載作用下將產生固結沉降,對樁側產生負摩阻力。設計中在驗算樁基承載力時,要充分考慮樁側負摩阻力的影響。
(4)場地分布人工填土及淤泥質軟土,填土土質松散,淤泥質土土質軟,鉆孔灌注樁樁身穿越填土及淤泥質軟土時,須注意孔壁坍塌及縮頸現象,可采取埋設護筒、合理調配泥漿比重等措施。
(5)鉆孔灌注樁樁身穿越厚層粉土、粉砂時,因鉆進速度慢,鉆孔施工時間長,易產生塌孔、樁身夾泥等不良現象,施工時應采取調節泥漿比重、成孔后加強清孔等措施防止塌孔、樁身夾泥等不良現象發生,確保成樁質量。
(6)在施工過程中,尚應進行必要的施工監測。檢查施工引起的地表沉降是否超過允許范圍,決定是否需要采取保護措施,并為確定經濟、合理的保護措施提供依據,對橋梁的沉降及傾斜變形應進行相應的實時的監測。一旦發現實測位移超過警戒值應立即對樁周土體進行注漿加固。
(7)盾構施工至少應在樁基施工完成一個月后進行,樁基施工結束后,應對樁身完整性進行檢測,在盾構頂進結束后,應重新對地鐵上下行之間的樁基完整性進行檢測,在檢測結果滿足規范要求后,方可施工承臺。
5盾構施工注意事項
(1)合理安排盾構推進順序。盾構施工至少應在樁基施工完成一個月后進行,先掘進左線,后掘進右線,為了減少對土的擾動,左右線盾構始發時間間隔為一個月。
(2)橋區段穿越前做好準備工作。在盾構到達橋區段30m界限前,檢查刀具磨損量,有磨損立即更換滾刀;確保管片防水和拼裝質量;選用質量優良的盾尾油脂。
(3)合理安排施工工序,安排專人負責掘進出土與管片拼裝等主要工序,盡量縮短測量、管片、渣土車等待時間,提高運輸效率,維持作業面連續施工,加快管片拼裝作業,減少對周邊土體的影響。
(4)控制施工進度,嚴格控制盾構糾偏量,穩步前進。增加刀盤轉速,降低盾構推進速度,控制油缸推進力,減小盾構推進過程中對周邊土體的剪切擠壓作用,及時有效的糾正推進偏差。
(5)同步注漿。嚴格控制同步注漿量和漿液質量,通過同步注漿及時填充建筑空隙,減少施工過程中的土體變形,同步注漿量增加到建筑空隙的200%~250%左右。
(6)二次注漿。為減少同步注漿液早期強度低、隧道受側向分力影響大、效果不佳等問題,在管片出盾尾5環后,需要進行二次注漿。漿液為瞬凝性好、具有較高的早期強度的雙液漿。注漿量根據變形監測情況確定。
(7)根據施工進程和監測結果,及時調整同步注漿和二次注漿的配合比。
6結束語
1.1混凝土問題
混凝土是我國目前公路橋梁建筑中普遍采用的基本材料,在施工中,混凝土一方面對橋梁的橋體起到穩固作用,提高橋體結構的穩定性和耐久性;另一方面也為橋梁橋體起到防水的作用,防止橋體受雨水的腐蝕。若在施工中,使用的混凝土和易性不佳,就會降低其防水性能的正常效果,致使混凝土表層內形成氣泡,氣泡水分蒸發導致混凝土表層形成蜂窩小孔,長久以后,混凝土表面產生裂縫,造成橋梁橋體嚴重的質量問題。
1.2防水措施的技術問題
我國在公路橋梁建筑施工中采取的防水措施,主要是沿用傳統的工藝和學習國外的技術,一方面受我國公路橋梁建筑施工發展時間較短的影響,另一方面則是因為在施工初期沒有重視防水措施的實際使用。防水措施的技術水平較低,是造成橋梁橋體受雨水腐蝕進而大大縮減了橋梁實際使用年限的又一因素。
2公路橋梁設計的原則及要求
2.1公路橋梁的設計原則
公路橋梁的設計原則,根據橋梁的上下分布主要分為兩個部分:2.1.1公路橋梁上部的設計原則公路橋梁上部的設計原則,主要在于重視橋梁上部分的結構構造,如主梁、搭板、伸縮縫等,在主梁的設計上:對于跨徑在10m內的主梁,設計原則一般采用通用的混凝土鋼筋結構,若單孔跨徑超過10m,則應當選用含預應力技術的混凝土結構;若橋梁長度小于100m或單孔跨徑小于20m,即宜選用空心板結構;若施工的橋梁跨河,難以利用支架進行澆筑工作,則應當選用連續的空心板結構。另外,考慮到實際橋梁橋面的平曲線以及通車運營時的平穩性,就應當在施工中適當減少伸縮縫數量,如單孔跨徑16m以內的橋梁,在設計中僅需1道伸縮縫即可,注意在另一端利用連續結構進行施工,確保橋面的平曲線;若單孔跨徑大于16m,應當將伸縮縫施工在橋墩,利用連續對橋兩端進行施工,這不僅是考慮通車運營時的平穩性,更是減少安全事故的發生幾率。2.1.2公路橋梁下部的設計原則橋臺和橋墩等結構構造是進行橋梁下部設計時應當注意的,在橋臺的設計上:填土高度對于保障橋臺的質量具有重要作用,一般而言,在軟土土層的路段,填土高度應當保持在6m內,在一般土層的路段,填土高度適宜保持在10m內;同時,橋臺的受力方式一般都會采用重力式,這主要考慮到施工方便和成本控制,對于8m以上臺身的墻面,一般而言宜用斜坡,斜率為10:1,需要注意的是對于水平方向存在高度差的地面,則應當選用階梯式的前墻設計方式。在橋墩的設計上:若橋梁設計為一般結構,宜使用框架式橋墩,即直接在橋墩上蓋梁;若在水平方向存在高度差的地面,選用樁柱式橋墩更符合設計原則;若橋梁不同跨徑的橋孔的斜交角在30°以內,則橋墩設計應當采用雙柱式;若橋梁不同跨徑的橋孔的斜交角在30°以外,則橋墩設計應當采用三柱式。
2.2公路橋梁設計的要求
2.2.1設計和環境的結合橋梁的設計需要根據實際的地理環境,實現設計和環境的結合,這是公路橋梁設計的第一個要求。一般而言,公路橋梁的設計,是為了保障建成后的質量,這是進行施工的首要目標;同時,考慮到橋梁建成后的經濟成本以及美觀價值,則需要確保設計中要將實際環境作為參考依據。2.2.2達荷載標準達荷載標準,這是公路橋梁設計的第二個要求,公路橋梁的建設,是為了實現交通便利和促進經濟的發展,達到通車荷載標準,這是公路橋梁實現其使用價值的必須要求。
3公路橋梁的防水措施
對建成的公路橋梁采取相應的防水措施,這對于避免橋梁主梁、橋面等出現裂縫、坍塌等情況的質量問題具有重要作用,同時也是對延長橋梁實際使用年限的有效措施。主要的防水措施有以下兩個方面:
3.1建立防水體系
防水體系的建立和實施步驟主要分為四個部分:①橋面的清潔工作,對整體橋面的外觀進行簡單的清理,如油污、浮漿等污漬,保持橋梁橋面的干凈;②基層處理劑的涂刷工作,使用配套的處理劑進行均勻涂刷工作,需要引起注意的是,在實施熱熔操作的基層處理劑作業時,要確保橋面是在干燥狀態,若橋面處于潮濕狀態則可能發生安全事故;③防水層的鋪貼工作,先使用噴燈等設備對橋面和防水卷層進行均勻加熱操作,再彈出下坡面的基準線,待橋面干燥和卷材外層出現融化情況后及時進行鋪貼工作;④接縫處的密封工作,完成鋪貼工作后,需要注意接縫處的密封情況,使用噴燈對接縫處進行加熱處理,做好密封處理。
3.2具體防水措施
嚴格設計和控制混凝土的配合比和澆筑的施工質量,確保鋼筋混凝土結構內不會產生氣泡,從而影響內部結構的穩定性,條件允許情況下利用機械設備對混凝土表層進行清理工作;嚴格控制伸縮縫的施工,首先確保施工操作的規范性,其次使用防水性能較好的材質,最后確保鋼梁的受力安全情況,保證其位移的均勻性。
4總結
車輛荷載計算含有多個參數,例如車重的測算、軸重、車間距等因素。因為這些數據的準確性會影響橋梁結構的使用期限。但是,將這些數據直接引入橋梁設計的可靠度分析會加大設計人員的工作量。所以,本文通過對各種橋梁結構不同跨徑的計算得出詳細、準確的數據,并分析這些數據,以獲得具有一定控制作用的各種荷載效應。計算這些數據時,采用的是正常運行狀態和密集運行狀態兩種方式,并且采用了規定中的標準荷載效應值的比值K和橋型結構中不同跨徑的統計數據類比、分析的方式,正常運行時對應的是汽車20級狀態下的荷載,密集運行時對應的是大于汽車20級狀態下的荷載。
1.1車輛荷載的效應計算和統計分析在對比、分析各種數據和方案后發現,實際測量正常運行的車隊更符合車輛荷載的實測計算。在選擇橋型結構時,以效應比值進行分析、統計,相對來說要求就沒有那么嚴格,所以說,主要是計算橋型結構中的簡支梁和多跨連續梁。計算簡支梁和多跨連續梁的目的是為了控制截面的彎矩和剪力效應,具體的分析步驟如下:①按照國家制定的標準,在不同的橋型結構、跨徑、效應等計算的效應容本中,抽取一定比例的樣本。②以一年的運行狀況為周期,一百年的周期為設計基準,由公式求得:FM(x)=[F(x)]T=[F(x)]100.取FM(x)的某一分位值除以現行標準車輛荷載效應的計算值,就可以得到設計基準期內荷載效應比值的無量綱參數Ks,這里取FM(x)的0.05和0.95分位值,即取[F(x)]100=0.5和[F(x)]100=0.95計算。2004年,國家在頒布的新規范中廢除了四級汽車車隊荷載,新規范中規定了公路Ⅱ級和公路Ⅰ級(即分別相當于1989規范中的汽-20級和汽-超20級)。為了使車輛的荷載效應計算更為簡便,在精簡車輛荷載等級的原則上,刪除了車隊荷載布載,并對車輛荷載和車道荷載采用了局部效應計算和整體效應的計算方式。
1.2新規范對重載交通車輛荷載的改進分析
1.2.11989規范和2004規范的荷載計算對比在我國2004年頒布的新規范中,確定了橋梁沖擊系數是采用結構基頻的方式決定的,從根本上改變和制約了1989規范中“橋梁沖擊系數中是通過計算跨徑來決定的”的要求。針對1989規范中只考慮原材料和跨度的因素,在2004規范中加入了橋型、連接方式和截面等結構基頻等因素作為參數,從質量、阻尼、剛度等方面來決定橋梁本質。也就是說,為了更加科學地設計橋梁,只要抓住結構基頻的本質,保持基頻是固定的,無論橋梁的跨度、原材料和橋型等因素有多大的區別,橋梁本身的動力本質都沒有大變化。
1.2.2修訂了對橋寬的要求為了使計算更加科學化、明確化,我國在2004年的新規范中加入了針對不同等級的道路、橋梁設計的車速測算,并且在設計橋梁寬度時,依據車速對其進行設計。這樣就對我國在1989年的規范中“橋寬主要是依照山嶺、平原、丘陵等不同地形的確定和地形本身具有的可改造性來確定橋寬”的規定有了更進一步的說明,使其更加明確。
1.2.3修訂車輛荷載的劃分隨著時代的發展,為了使道路、橋梁更能適應社會和經濟的變化,在我國頒布的新規范中,在精簡了四級汽車車隊荷載的基礎上,用公路Ⅱ級和公路Ⅰ級(即分別相當于1989規范中的汽-20級和汽-超20級)來取代和明確車輛荷載的計算方式。為了能夠更加簡單和科學地計算車輛的荷載效應,改進了車隊的荷載布載。其中,車輛荷載是指局部效應計算,車道荷載是指整體效應計算。
2結束語
1.1程序的數據接口問題
(1)程序應最大限度的調用前期設計數據,減少人工輸入,程序需通過制作數據接口,從前期設計軟件中有選擇性的調入全橋總信息及每個墩臺的墩臺號、墩臺里程、基礎類型、初始樁長、基頂基底標高、基礎尺寸、樁基布置等信息,減少設計者重復輸入,同時降低操作錯誤率。(2)樁基展開布置時要求對每根樁的數據進行操作,現有的每個橋墩樁基數據中樁基數據需通過一定轉換,以圖形形式清晰明了的展現出來,同時還能夠提供一定格式的數據供其他程序進行計算等。(3)設計者對全橋每個橋墩基礎數據修改編輯后,程序需將數據存儲起來,以備進行下一步操作和下次查詢。但由于全橋信息量較大,需研究有效的數據存儲形式,以便設計者能快速調用和修改。
1.2數據在不同的坐標系進行坐標轉換
(1)在程序默認樁坐標、地質提供的樁坐標以及橋梁樁基計算程序樁坐標3者之間進行轉換,提供給設計者便捷的修改方式,滿足各種不同的坐標系統之間進行靈活的的轉換。(2)地質展開剖面圖的不確定性決定了基礎展開形式的多樣性,樁與樁之間的相互位置關系變化多樣,程序應能適用各種不同的情況,快速計算各樁位之間的相互位置關系。
1.3程序的繪圖及讀圖功能
(1)根據地質剖面圖的展開路徑繪制基礎展開布置圖時,程序通過讀取地質剖面圖中的信息,校核地質剖面圖的比例,定位每個鉆孔的位置,根據每根樁與各鉆孔之間的位置關系來繪制基礎展開布置圖。展開圖能按照一定的縱橫向比例繪制,每個樁位標明相應的編號等。程序應根據地質剖面圖的形式,靈活采用單點定位和多點定位,同一樁基靈活拆分,提供多樣的繪圖方式。(2)程序需對地質柱狀圖逐孔進行識別提取各地層信息后,根據專業要求將地層詳細的描述轉換到地質剖面圖中,完善各地層的地質描述。根據縱橫向比例將地層名稱、承載力值等描述添加到地質剖面圖中。(3)程序應有完善的圖面清理及圖面排版布局功能,以及樁長反讀及校核功能便于進行后續計算等。
1.4橋梁基礎的數量計算及匯總功能
(1)程序應根據全橋工程數量計算模板衍生出單墩數量計算模板進行展開后的樁基計算,以統一數量計算格式,提高程序自動轉換、批量處理效率。(2)根據每根樁的鉆孔資料進行各鉆孔土層進行分析,歸類匯總各土層的數量,盡可能精確計算單墩的基礎數量。(3)程序應將全橋各橋墩的單墩基礎數量進行匯總,生成全橋總數量。
2關鍵技術
2.1數據接口及轉換
(1)基礎的設計需要前期數據的調出量大,種類雜,數據調入調出時盡量減少對象中數據轉換,采用數組進行內部運算完成后,再將運算結果與表格進行對接,將對表格對象的操作次數降低到最少,提高運行速度。(2)設定3套坐標系統進行靈活的轉換,將數據圖形化,直觀化,如圖1所示。樁基礎設計中,地質樁號又能根據實際鉆孔路徑任意編排,樁間距能迅速計算導出,對部分數據進行監控,當數據修改時,能迅速響應,調出數據,展示圖形,操作相當方便,顯示也很直觀明了。程序計算完成后,能自動進行存儲,數據更新及時,靈活方便。任意路徑展開樁基的計算,如圖2所示。對于樁基礎,程序處理流程如圖3所示。
2.2樁基坐標轉換的實現
前期的數據收集后,通過校核補齊后轉換成程序默認的坐標系統,樁號順序按照從上到下和從左到右的順序編排的開來,這樣編排符合一般的標號習慣。橋梁設計軟件中樁排列一般是按x坐標從小到大,然后y坐標從小到大的順序排列的,這種排列方式便于程序計算。地質專業進行地質鉆孔時,形成相應鉆孔順序和坐標系統。于是程序內部需要建立3套坐標系統的相互關系網,以便能快速在各坐標系統之間進行轉換,快速與外部數據進行導入導出操作。程序內部各坐標之間的轉換關系如圖4所示。繪制展布圖時,承臺、樁及地層信息等在CAD圖中的縱橫向定位是比較棘手的問題。縱向定位主要有每根樁的樁頂高程、樁長、樁底高程、地層描述信息等,橫向定位主要是樁與鉆孔之間關系、樁與樁之間的關系定位等。縱向定位關鍵是確定定位標尺后計算高程標定縱向元素,橫向定位的關鍵是定位鉆孔按繪圖比例計算距離在定位樁位。樁基縱向定位的基本的流程如圖5所示。
2.3添加地質鉆孔信息
地層信息由地質鉆孔柱狀圖提取后展示到地質剖面圖中前,需要對地質柱狀圖進行分析過濾提取各地層信息,再在地質剖面圖中定位到鉆孔編號后根據地層上下界面高程縱向定位到各地層中去。添加地質鉆孔信息后如圖7所示。2.5單墩樁基及全橋樁基工程數量的計算計算單墩樁基工程數量時,程序通過全橋工程數量表衍生出單墩工程數量表,保持基礎工程數量計算相關工作表中各項目的完整,利用其固定性而又適應其靈活性,繼承全橋工程數量表的計算方法和特點。設計者對單墩工程數量計算完成后,程序將各墩數量匯總起來,再經過設計者復核,程序再將其與全橋工程數量整合在一起。其間的計算步驟均允許設計者參與修改,同時程序進行邏輯性校核等。匯總各墩數據到全橋工程數量表中的流程圖如圖8所示。
3結束語