時間:2023-08-04 16:59:39
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇歐姆定律本質范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
關鍵詞: 物理 歐姆定律 復習
在物理復習的整個知識體系中,電學知識板塊兒尤為重要。一是:它占整個三式合一理化試題物理部分的40%左右,即70分中的近30分屬于物理電學試題。二是:電學知識在生產實踐中的重要作用已凸顯出來。而要學生全面掌握、領會初中階段電學知識,對于相當一部分初中生來說具有較大的難度。從教以來我聽過一些初中電學復習課:有的先把所要用到的電學公式板書在黑板上,再講典型例題,接著練習;有的則通過學生作題中所反饋的問題對知識進行補充強調,再練習;有的直接強調萬變不離其宗,讓學生多看教材,然后講例題等。復習中講例題沒錯,但選擇的例題過多,又無代表性,既延長了復習時間,又不能使學生的知識得到升華。久而久之,學生疲勞,老師厭煩。要使復習課在短時間內生動、奏效,應選擇恰當的例題,在講例題的基礎上,對知識進行歸納和升華。
復習課,一要體現“從生活走向物理,從物理走向社會”,教學方式多樣化等新課程理念;二要體現“知識與技能、過程與方法以及情感態度和價值觀”三維目標的培養;三要優化學生的認知結構,讓學生在教師的引導、幫助下,把學到的知識歸納起來,從而便于提練和記憶。所以對電學的復習要從學生喜聞樂見的小電器起步,從典型例題入手進行歸納總結。
例1:如圖-1是一個玩具汽車上的控制電路。小明對其進行測量和研究發現:電動機的線圈電阻為1Ω,保護電阻R為4Ω。當閉合S后,兩電壓表的示數分別為6V和2V,則電路中的電流為?搖 ?搖?搖?搖A,電動機的功率為?搖?搖 ?搖?搖W。(這是陜西師范大學出版社出版,經陜西省中小學教材審定委員會2008年審定通過的《物理課堂練習冊》中的一道題)
學生通常按下列方法計算電路中的電流:
R中的電流:I=U/R=2V/4Ω=0.5A,
電動機中的電流:I=U/R=4V/1Ω=4A,
由此得第一空電路中的電流就有兩個值0.5A和4A。
于是第二空的對應值為:P=UI=4V×0.5A=2W與P=UI=4V×4A=16W。這就存在兩個問題:
1.根據歐姆定律計算出兩個串聯元件中的電流不相等,與串聯電路中電流的特點相矛盾。
2.由串聯分壓原理得:U:U=R∶R=1∶4,得:
①當U=2V時,U=8V,得到U+U=2V+8V=10V≠U源;
②當UM′=4V時,U′=1V。U′+U=1V+4V=5V≠U,這與串聯電路中的電壓關系相矛盾。
對此,應找出題中所涉及的知識點,分析這些知識點間的聯系,那上面的矛盾就迎刃而解了。
首先,應對歐姆定律有深入的理解。
例2:如圖2所示電路(R≠R≠R)。引導學生分析如下:
1.對電路狀態的分析。
(1)當S、S、S都閉合時,R與R并聯,并聯后作為一個整體再與R串聯。A測R中的電流,V測R或R兩端電壓。
(2)當S、S閉合S斷開時,則由圖-2演變為圖-2(a)到(b)。
R與R串聯,R處于斷開狀態,A測整個電路中的電流。
(3)當S、S閉合S斷開時,則由圖2演變為圖-2(c)到(d)。
R與R串聯,R處于斷開狀態,V測R兩端電壓。
2.歐姆定律中涉及I、U、R三個量間的關系。
(1)歐姆定律中的I、U、R三個量是針對同一個用電器或者同一部分電路而言的,即必須滿足“同一性”。
當圖-2中的S、S、S都閉合時,A測R中的電流為I,V測R兩端電壓為U。此時能否用U與I的比值來計算R或R阻值呢?(即R=U/I)。
如果R=R時,由于R與R并聯,所以R兩端電壓U等于R兩端電壓U,即U=U=U。根據R=U/I得R=U/I,R=U/I。這樣計算出的R2的值雖然是正確的,但屬于不正確的方法得出了正確的結果,實屬偶然巧合。
若R≠R時,那么R=U/I,若再按R=U/I來計算R的電阻值就沒有上述的巧合了。因為電壓相等是并聯電路電壓的特點,R、R中的電流是不相等的。上述中錯誤地認為R、R中電流相等。這里的電壓是R兩端電壓,而電流是R中的電流,電壓與電流是兩個不同電阻(或用電器,或電路)的對應量,也就違背了“同一性”。
這就告訴我們,在應用歐姆定律解題時,一定要遵循“同一性”原則,切忌“張冠李戴”,電學中的所有公式都不能違背“同一性”原則。如:W=UIt、Q=IRt、P=UI等。
(2)歐姆定律中的I、U、R三個量必須是同一狀態、同一時刻存在的三個物理量,即必須滿足“同時性”。
在圖-2中,當S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小是否相等?
在圖-2中,當S、S閉合S斷開時,不難看出,R與R串聯:I=I=I則I=U源/(R+R);當S、S閉合S斷開時,R與R串聯:I=I=I,則I=U/(R+R)。因為R+R≠R+R所以U源/(R+R)≠U源/(R+R),即兩次電流不相等。S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小不相等,這是因為S、S閉合時與S、S閉合時電路狀態不同,R是在不同的狀態下工作,不是同一時間內電流的大小,電流不相等。
在利用公式計算的過程中,不能用第一狀態下的量值與第二狀態下的量值代入關系式計算。如:要計算R的電阻值,就不能用第一狀態下R兩端的電壓值與第二狀態下R中的電流的比值來計算R的電阻值。在計算電流、電壓時,也不能這樣處理。
因此在利用公式計算時,帶值入式的物理量必須是同一狀態下的物理量,必須滿足“同時性”。
(3)歐姆定律中的I、U、R三個量的單位必須同一到國際單位制,即I―A、U―V、R―Ω。即應滿足“統一性”。
除各物理量的主單位外,還應記住常用單位及其單位換算關系,將常用單位換算為國際單位制單位,在利用其它電學公式計算時也要統一單位。
如:電功的公式W=UIt中,各物理量的對應單位:U-V、I-A、t-S;這樣W的單位才是J。電熱的公式Q=IRt中:I―A、R―Ω、t―S;這樣Q的單位才是J。電功率的公式P=UI中:U-V、I-A,這樣P的單位才是W。
我們要確定歐姆定律的適用條件。
1.歐姆定律只對一段不含電源的導體成立,即只適用于純電阻電路。因此,歐姆定律又稱為一段不含源電路的歐姆定律。
例1中涉及到電磁轉換的知識,電動機工作時實質上也是一個發電機。電動機工作時,其閉合線圈切割磁感線會產生感應電流,所產生的感應電流對流過電動機線圈中的電流有一定影響。
實際上圖1相當于一個“RL”串聯電路,總電壓的有效值不等于各分電壓有效值的代數和,即U≠U+U。但得到的電流有效值的關系I=U/Z與直流(或部分)電路的歐姆定律相似,各元件上的分電壓與該元件的阻抗(Z)成正比。
雖然電動機工作時產生的阻抗目前初中階段無法計算出來,但無論電動機工作時產生的阻抗為多少,電路中的電流都等于電阻R中的電流,即I=U/R=2V/4Ω=0.5A。電動機兩端的實加電壓等于總電壓(電源電壓)減去電阻R兩端的電壓,即U=U-U=6V-2V=4V。則電動機的功率為:P=UI=4V×0.5A=2W。
本文為全文原貌 未安裝PDF瀏覽器用戶請先下載安裝 原版全文
上述分析說明,電阻R所在的這部分電路與電動機所在的這部分電路有著本質的不同。從能量轉化的角度看:電阻R所在的這部分電路是將電能全部轉化為熱能;而電動機所在的這部分電路電能只有少部分轉化為熱能,大部分轉化為機械能。前者屬于純電阻電路,后者屬于非純電阻電路。
歐姆定律只適用于純電阻電路,即用電器工作的時候電能全部轉化為內能的電路。例如電熨斗、電暖氣、電熱毯、電飯鍋、熱得快等。而電動機、電風扇,等等,除了發熱外,還對外做功,所以這些是非純電阻電路,歐姆定律不再適用。由歐姆定律導出的公式也只適用于純電阻電路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)
2.歐姆定律適用于金屬導體和通常狀態下的電解質溶液;但是對于氣態導體(如日光燈管中的汞蒸氣)和其它一些導電元器件,歐姆定律不成立。歐姆定律對某一導體是否適用,關鍵是看該導體的電阻是否為常數。當導體的電阻是不隨電壓、電流變化的常數時,其電阻叫線性電阻或歐姆電阻,歐姆定律對它成立;當導體的電阻隨電壓、電流變化時,其電阻叫非線性電阻,如:電子管、晶體管、熱敏電阻等,歐姆定律對它不成立。
3.歐姆定律只有在等溫條件下,即導體溫度保持恒定時才能成立。當導體溫度變化時,歐姆定律對該導體不成立,因為電阻是溫度的函數。
在講解歐姆定律的應用時,常舉白熾燈的例子,實際上白熾燈的鎢絲在溫度變化很大時電阻具有非線性,隨著電流的增大,鎢絲的溫度升高很多,其電阻也隨著變化。對非線性電阻,歐姆定律不成立,但是作為電阻定義的關系式R=U/I仍然成立,只不過對非線性電阻,R不再是常量。
綜上所述,例1中第一空電路中的電流有兩個值0.5A和4A,一個是在純電阻電路(電阻R)中用歐姆定律算出的電流0.5A。另一個是用歐姆定律計算在非純電阻電路(含電動機的電路)中的電流為4A,顯然不對。
通過對例1的全面、透徹的分析,我們對電學知識得到了進一步升華:(1)判斷電路的連接方式;(2)判斷電表的作用;(3)利用歐姆定律解決實際問題時必須注意“三性”;(4)復習了電功率、焦耳定律等相關電學公式;(5)歐姆定律的適用范圍。
學生能夠領悟到,復習不是為了解題,而是要掌握知識的前后聯系,優化知識結構;仔細觀察,認真分析;發散思維,以點帶面;舉一反三,融會貫通。這樣,從而體現出知識與技能、過程與方法,以及情感態度和價值觀的培養。
參考文獻:
[1]王較過.物理教學論.陜西師范大學出版社,2003.
[2]閻金鐸,田世坤.初中物理教學通論.高等教育出版社,1989.
[3]梁紹榮等.普通物理學―電磁學高等教育出版社,1988.
[4]新課程實施難點與教學對策案例分析叢書,(初中卷).中央民族大學出版社.
常見考點知識總結
1.三種表達式:(1)I = ;(2)E = U外+U內;(3)U端 = EIr.
2.路端電壓U和外電阻R外關系:R外增大,U端變大,當R外 = ∞(斷路)時,U端 = E(最大);R外減小時,U外變小,當R外 = 0(短路)時,U端 = 0(最小).
3.總電流I和外電阻R外關系:R外增大,I變小,當R外 = ∞時,I = 0;R外減小時,I變大,當R外 = 0時,I =(最大). (電源被短路,是不允許的)
4.幾種功率:電源總功率P總 = EI(消耗功率);輸出功率P輸出 = U端I(外電路功率);電源損耗功率P內損 = I2r(內電路功率);線路損耗功率P線損 = I2R線.
一、在圖像問題中的應用
例1利用圖1所示電路可以測出電壓表的內阻.已知電源的內阻可以忽略不計,R為電阻箱.當R取不同阻值時,電壓表對應有不同讀數U.多次改變電阻箱的阻值,所得到的R圖像應該是 ( )
解析設電源電動勢為E,電壓表內阻為RV,電壓表的讀數為U,則由閉合電路的歐姆定律可得I = ,則U = EIR = E,由此可得R = RV,由此判斷A正確.
二、在非純電阻電路中的應用
例2如圖2所示為汽車蓄電池與車燈(電阻不變)、啟動電動機組成的電路,蓄電池內阻為0.05 .電流表和電壓表均為理想電表,只接通S1時,電流表示數為10 A,電壓表示數為12 V;再接通S2,啟動電動機工作時,電流表示數變為8 A,則此時通過啟動電動機的電流是( )
A.2 AB.8 AC.50 AD.58 A
解析只接通S1時,由閉合電路歐姆定律得:E = U+Ir = 12 V+10.05 V = 12.5 V,R燈 == = 1.2 ,再接通S2后,流過電動機的電流為:I電動機 = I′= A8 A = 50 A,故選項C正確.
三、在動態電路中的應用
例3為了兒童安全,布絨玩具必須檢測其中是否存在金屬斷針,檢測時可以先將玩具放置在強磁場中,若其中有斷針,則斷針被磁化,用磁報警裝置即可檢測到斷針的存在.圖3所示是磁報警裝置中的一部分電路示意圖,其中RB是磁敏傳感器,它的電阻隨斷針的出現而減小,a、b接報警器,當傳感器RB所在處出現斷針時,電流表的電流I、ab兩端的電壓U將 ( )
A.I變大,U變大B.I變小,U變小
C.I變大,U變小D.I變小,U變大
解析由題意知RB的電阻隨斷針的出現而減小,即外電路的電阻減小,由閉合電路歐姆定律有I總 = ,可知I總必增大,再由U外 = EI總r可知,外電壓U減小.而由U1 = I總R1可知,U1增大,U2必減小,由電流表的電流I = I總I2可知,電流表的電流必變大.故選項C正確.
四、在含容電路中的應用
例3如圖4所示,電源電動勢E = 12 V,內阻r = 1 ,電阻R1 = 3 ,R2 = 2 ,R3 = 5 ,電容器的電容C1 = 4 F,C2 = 1 F,求C1、C2所帶電荷量.
解析根據閉合電路歐姆定律,
I == A = 2 A,
U1 = IR1 = 6 V,U2 = IR2 = 4 V,
UC1 = U2 = 4 V,UC2 = U1+U2 = 10 V.
根據電容器的電容的表達式Q = CU可得:
Q1 = C1UC1 = 406 C = 1.605 C
Q2 = C2UC2 = 1060 C = 105 C.
五、在綜合類問題中的應用
例6圖5甲所示為某電阻R隨攝氏溫度t變化的關系圖像,圖中R0表示0℃時的電阻值,k表示圖線的斜率.若用該電阻與電池(電動勢為E,內阻為r)、電流表(滿偏電流為Ig、內阻為Rg)、滑動變阻器R′串聯起來,連接成如圖5乙所示的電路,用該電阻做測溫探頭,把電流表的電流刻度改為相應的溫度刻度,于是就得到了一個簡單的“電阻溫度計”.
(1)使用“電阻溫度計”前,先要把電流表的刻度改為相應的溫度值,若溫度t1< t2,其對應的電流分別為I1、I2,則I1、I2誰大?
(2)若該“電阻溫度計”的最低適用溫度為0℃,即當溫度為0℃時,電流表恰好達到滿偏電流Ig,則變阻器R′的阻值為多大?
(3)若保持(2)中電阻R′的值不變,將電流表刻度盤換為溫度刻度盤,刻度均勻嗎?
解析(1)由圖5甲可知溫度越高,電阻R越大,對應電路中的電流越小,故I1>I2.
(2)由閉合電路歐姆定律得:Ig = ,
得:R′=R0Rgr.
(3)由圖(a)得R = R0+kt.
再由閉合電路歐姆定律得:
I = ,解之得:t = (),由t = ()可知,t與I不是一次線性關系,故刻度不均勻.
例7受動畫片《四驅兄弟》的影響,越來越多的小朋友喜歡上了玩具賽車.某玩具賽車充電電池的輸出功率P隨電流I變化的圖像如圖6所示.
(1)求該電池的電動勢E和內阻r;
(2)求該電池的輸出功率最大時對應的外電阻R(純電阻);
(3)由圖像可以看出,同一輸出功率P可對應兩個不同的電流I1、I2,即對應兩個不同的外電阻(純電阻)R1、R2,試確定r、R1、R2三者間的關系.
解析(1)由圖像可知I1 = 2 A時,有Pm == 2 W.
I2 = 4A時,輸出功率為P=0,此時電源被短路,即:I2 = ,聯立解得:E = 2 V,r = 0.5 .
(2) 電池的輸出功率最大時有R = r,故 r = R = 0.5 .
(3)由題知:()2R1 = ()2R2,整理得r2 = R1R2.
例8如圖7所示的電路中,兩平行金屬板A、B水平放置,兩板間的距離d = 40 cm.電源電動勢E = 24 V,內電阻r = 1 ,電阻R = 15 .閉合開關S,待電路穩定后將一帶正電的小球從B板小孔以初速度v0 = 4 m/s豎直向上射入板間.若小球帶電荷量為q = 102 C,質量為m = 202 kg,不考慮空氣阻力.那么,滑動變阻器接入電路的阻值為多大時,小球恰能到達A板?此時,電源的輸出功率是多大?(取g = 10 m/s2)
解析小球進入板間后,受重力和電場力作用,且到達A板時速度為零.設兩板間電壓為UAB,由動能定理得:mgdqUAB = 0mv02,解得UAB = 8 V.
我們可以從以下幾個方面加以區別理解。
一、它們描述的對象不同。電動勢是電源具有的,是描述電源將其它形式的能轉化為電能的本領的物理量;電壓是針對一般電路中的兩個點而說的,即某段電路兩端的電壓。
二、二者做功的力不同。電動勢是反映電源非靜電力做功特性的,它的數值大小等于電源非靜電力從電源負極向正極移送單位正電荷所做的功,電動勢W/q中的W就是非靜電力所做的功,即電動勢E是與非靜電力做功相聯系的。電壓是電場中兩點間的電勢差值,是反映電場力做功本領的物理量,電場力在電場中移動單位正電荷所做的功就是電勢差,公式電壓U=W/q中W 是電場力做的功,可見電壓U是與電場力做功相聯系的。
三、物理意義不同。電動勢是描述電源轉化其它形式能量本領的量度,在閉合電路中某種非靜電力作用在被移動的電荷上, 增加了電荷的電勢能,在此其他形式的能如化學能、太陽能、機械能等轉化為電能。不同的電源這種由非靜電力做功轉化為電能的本領不同,所以電動勢也不同。而電壓是電勢能變化的量度,即是描述將電勢能轉化為其它形式的能量的多少,電壓在數值上等于移動單位正電荷電場力做的功。它們都反映了能量的轉化,但轉化的過程是不一樣的。
四、在給定電路中變與不變不同。對于一個給定的電源,電動勢是常量,與外電路是否接通無關,也與外電路的組成情況無關,一節普通干電池不管新舊,它的電動勢永遠是1.5伏。而電路中的電壓是變量,隨外電路電阻的改變而改變,如并聯支路數目增減,電阻變化時將引起電路各部分電流,電壓重新分配,電壓將發生變化。
關鍵詞:概念和規律;必然性;創設情境;適用范圍
物理知識中最重要最基本的內容是物理概念和規律,它們是整個物理知識的基本組成元素,學好物理概念和規律,并使學生的認識能力在形成概念和掌握規律的過程中得到發展,是物理教學的首要任務。物理概念和規律是人類在探索物理世界過程中,在大量觀察實驗的基礎上,運用邏輯思維的方法,把物理現象,物理過程的本質屬性加以抽象、概括形成的。任何概念和規律的形成并非一蹴而就,都需要一個發展的過程,其發展、完善的過程不乏有過程的科學分析,研究方法的確立以及人文價值的體現,這都是新課程標準的基本理念中的內容。
物理概念和規律的教學,一般要經過四個環節:引入概念和規律的必然性,建立概念和規律的過程,討論概念和規律的適用性, 應用概念和規律解決問題的思路。
一、引入概念和規律的必然性
每一個概念和規律的引入都有它的必然性,當我們研究問題時用以前的概念和規律無法解釋時,這就為概念和規律的引入創造了必然性,例如:在引入速度時,根據學生的生活經驗,體育課100米賽跑,班里誰最快?汽車與騎自行車同時開始,哪個快?學生用時間或路程比較物體運動快慢,當甲同學跑150米用30秒, 乙同學270米用50秒,甲乙誰快?此時用時間或路程比物體運動快慢就不可行,就需要建立速度的概念來說明問題。
引入概念和規律的核心方法是創設物理情境,提供感性平臺,概念和規律的基礎是以感性現象為出發點,通過對具體的物理現象及其特性進行概括、提煉、歸納、匯總,才能形成概念,對于物理現象變化規律及概念之間的本質聯系進行概括、歸納,就形成了物理規律,因此,教師要給學生提供豐富的感性素材。可以運用實驗來展示感性素材的物理現象和過程,利用直觀教具,利用學生已有的生活經驗,以及學生已經學習過的知識來展示感性素材,讓學生從這些不同的運動過程中,找出共性,從而概括定義。為形成概念、規律而選用的事例,必須是包括主要類型的,本質聯系明顯的。
二、建立概念和規律的過程
物理概念和規律是人腦對物理現象和過程等感性材料進行科學抽象的產物,在獲得感性認識的基礎上,提出問題,引導學生進行分析、綜合、概括,排除次要因素,抓住主要矛盾,找出一系列現象的共性、本質屬性,才能使學生正確形成概念。如功的概念的建立,是通過大量的生活情景,引導學生找出這些過程的共性,即不論哪個過程,都要有一個力,且物體都沿著這個力的方向移動一段距離。從而提煉出“功”的定義,在對共性進行概括和提煉時,教師要有意識引導學生突出本質,摒棄非本質,才能建立起正確的概念與規律。
三、討論物理概念和規律的適用范圍
教學實踐證明,只有學生真正理解了的東西,才能牢固地掌握。因此,在物理概念和規律建立以后,還必須引導學生對概念和規律進行討論,以深化認識。一般要從以下三個方面進行討論:一是討論其物理意義,二是討論其適用范圍和條件,三是討論有關概念和規律間的關系。例如對于歐姆定律的討論,首先應該讓學生知道歐姆定律研究的是電流與電壓、電阻的關系。而非電壓與電流、電阻的關系,或是電阻與電壓、電流的關系。其次要強調應用歐姆定律的對應性,這是學生特別容易出錯的地方,另外還要從電壓、電阻的作用入手說明電流與電壓成正比,與電阻成反比的內在聯系,只有把這三個方面的問題交代清楚了,學生在理解和掌握歐姆定律時才會少出錯誤。
四、運用物理概念和規律解決實際問題
學習物理知識的目的在于運用,在這一環節中,一方面要用典型的問題,通過教師的示范和師生共同討論,深化活化對所學的概念和規律的理解,逐步領會分析、處理和解決物理問題的思路和方法;另一方面,更主要的是組織學生進行運用知識的練習,要幫助和引導學生在練習的基礎上,逐步總結出在解決問題時的一些帶有規律性的思路和方法。其次,物理知識來源于自然,它又要服務于自然,使科學技術真正成為生產力。
(一)知識目標
1、知道電動勢的定義.
2、理解閉合電路歐姆定律的公式,理解各物理量及公式的物理意義,并能熟練地用來解決有關的電路問題.
3、知道電源的電動勢等于電源沒有接入電路時兩極間的電壓,電源的電動勢等于內、外電路上電勢降落之和.
4、理解路端電壓與電流(或外電阻)的關系,知道這種關系的公式表達和圖線表達,并能用來分析、計算有關問題.
5、理解閉合電路的功率表達式.
6、理解閉合電路中能量轉化的情況.
(二)能力目標
1、培養學生分析解決問題能力,會用閉合電路歐姆定律分析外電壓隨外電阻變化的規律
2、理解路端電壓與電流(或外電阻)的關系,知道這種關系的公式表達和圖線表達,并能用來分析、計算有關問題.
3、通過用公式、圖像分析外電壓隨外電阻改變規律,培養學生用多種方式分析問題能力.
(三)情感目標
1、通過外電阻改變引起電流、電壓的變化,樹立學生普遍聯系觀點
2、通過分析外電壓變化原因,了解內因與外因關系
3、通過對閉合電路的分析計算,培養學生能量守恒思想
4、知道用能量的觀點說明電動勢的意義
教學建議
1、電源電動勢的概念在高中是個難點,是掌握閉合電路歐姆定律的關鍵和基礎,在處理電動勢的概念時,可以根據教材,采用不同的講法.從理論上分析電源中非靜電力做功從電源的負極將正電荷運送到正極,克服電場力做功,非靜電力搬運電荷在兩極之間產生電勢差的大小,反映了電源做功的本領,由此引出電動勢的概念;也可以按本書采取討論閉合電路中電勢升降的方法,給出電動勢等于內、外電路上電勢降落之和的結論.教學中不要求論證這個結論.教材中給出一個比喻(兒童滑梯),幫助學生接受這個結論.
需要強調的是電源的電動勢反映的電源做功的能力,它與外電路無關,是由電源本生的特性決定的.
電動勢是標量,沒有方向,這要給學生說明,如果學生程度較好,可以向學生說明,做為電源,由正負極之分,在電源內部,電流從負極流向正極,為了說明問題方便,也給電動勢一個方向,人們規定電源電動勢的方向為內電路的電流方向,即從負極指向正極.
2、路端電壓與電流(或外電阻)的關系,是一個難點.希望作好演示實驗,使學生有明確的感性認識,然后用公式加以解釋.路端電壓與電流的關系圖線,可以直觀地表示出路端電壓與電流的關系,務必使學生熟悉這個圖線.
學生應該知道,斷路時的路端電壓等于電源的電動勢.因此,用電壓表測出斷路時的路端電壓就可以得到電源的電動勢.在考慮電壓表的內阻時,希望通過第五節的“思考與討論”,讓學生自己解決這個問題.
3、最后講述閉合電路中的功率,得出公式,.要從能量轉化的觀點說明,公式左方的表示單位時間內電源提供的電能.理解了這一點,就容易理解上式的意義:電源提供的電能,一部分消耗在內阻上,其余部分輸出到外電路中.
教學設計方案
閉合電路的歐姆定律
一、教學目標
1、在物理知識方面的要求:
(1)鞏固產生恒定電流的條件;
(2)知道電動勢是表征電源特性的物理量,它在數值上等于電源沒有接入電路時兩極間的電壓.
(3)明確在閉合回路中電動勢等于電路上內、外電壓之和.
(4)掌握閉合電路的歐姆定律,理解各物理量及公式的物理意義
(5)掌握路端電壓、輸出功率、電源效率隨外電阻變化的規律.
2、在物理方法上的要求:
(1)通過電動勢等于電路上內、外電壓之和的教學,使學生學會運用實驗探索物理規律的方法.
(2)從能量和能量轉化的角度理解電動勢的物理意義.
(3)通過對路端電壓、輸出功率、電源效率隨外電阻變化的規律的討論培養學生的推理能力.
(4)通過用公式、圖像分析外電壓隨外電阻改變規律,培養學生用多種方式分析
二、重點、難點分析
1、重點:
(1)電動勢是表示電源特性的物理量
(2)閉合電路歐姆定律的內容;
(3)應用定律討論路端電壓、輸出功率、電源效率隨外電阻變化的規律.
2、難點:
(1)閉合回路中電源電動勢等于電路上內、外電壓之和.
(2)短路、斷路特征
(3)應用閉合電路歐姆定律討論電路中的路端電壓、電流強度隨外電阻變化的關系
三、教學過程設計
引入新課:
教師:同學們都知道,電荷的定向移動形成電流.那么,導體中形成電流的條件是什么呢?(學生答:導體兩端有電勢差.)
演示:將小燈泡接在充滿電的電容器兩端,會看到什么現象?(小燈泡閃亮一下就熄滅.)為什么會出現這種現象呢?
分析:當電容器充完電后,其上下兩極板分別帶上正負電荷,如圖1所示,兩板間形成電勢差.當用導線把小燈泡和電容器兩極板連通后,電子就在電場力的作用下通過導線產生定向移動而形成電流,但這是一瞬間的電流.因為兩極板上正負電荷逐漸中和而減少,兩極板間電勢差也逐漸減少為零,所以電流減小為零,因此只有電場力的作用是不能形成持續電流的.
教師:為了形成持續的電源,必須有一種本質上完全不同于靜電性的力,能夠不斷地分離正負電荷來補充兩極板上減少的電荷.這才能使兩極板保持恒定的電勢差,從而在導線中維持恒定的電流,能夠提供這種非靜電力的裝置叫電源.電源在維持恒定電流時,電源中的非靜電力將不斷做功,從而把已經流到低電勢處的正電荷不斷地送回到高電勢處.使它的電勢能增加.
板書:1、電源:電源是一種能夠不斷地把其他形式的能量轉變為電能的裝置.它并不創造能量,也不創造電荷.例如:干電池是把化學能轉化為電能,發電機是把機械能、核能等轉化為電能的裝置.
教師:電源能夠不斷地把其他形式的能量轉變為電能,并且能夠提供恒定的電壓,那么不同的電源,兩極間的電壓相同嗎?展示各種干電池(1號、2號、5號、7號),請幾個同學觀察電池上面寫的規格,發現盡管電池的型號不同,但是都標有“1.5V”字樣.我們把示教電壓表直接接在干電池的兩端進行測量,發現結果確實是1.5V.講臺上還擺放有手搖發電機、蓄電池、紐扣電池,它們兩端的電壓是否也是1.5V呢?(學生回答:不是)那么如何知道它們兩端的電壓呢?(學生:用電壓表直接測量)·
結論:電源兩極間的電壓完全由電源本身的性質(如材料、工作方式等)決定,同種電池用電壓表測量其兩極間的電壓是相同的,不同種類的電池用電壓表測量其兩極間的電壓是不同的.為了表示電源本身的這種特性,物理學中引入了電動勢的概念.
板書:2、電源電動勢
教師:從上面的演示和分析可知,電源的電動勢在數值上等于電源未接入電路時兩極間的電壓.
板書:電源的電動勢在數值上等于電源沒有接入電路時其兩極間的電壓.
例如,各種型號的干電池的電動勢都是1.5V.那么把一節1號電池接入電路中,它兩極間的電壓是否還是1.5V呢?用示教板演示
,電路如圖所示,結論:開關閉合前,電壓表示數是1.5V,開關閉合后,電壓表示數變為1.4V.實驗表明,電路中有了電流后,電源兩極間的電壓減少了.
教師:上面的實驗中,開關閉合后,電源兩極間的電壓降為1.4V,那么減少的電壓哪去了呢?用投影儀展示實驗電路,介紹閉合電路可分為內、外電路兩部分,電源內部的叫內電路,電源外部的叫外電路.接在電源外電路兩端的電壓表測得的電壓叫外電壓.在電源內部電極附近的探針A、B上連接的電壓表測得的電壓叫內電壓.我們現在就通過實驗來研究閉合電路中電動勢和內、外電壓之間的關系.
板書:3、內電壓和外電壓
教師:向學生介紹實驗裝置及電路連接方法,重點說明內電壓的測量.實驗中接通電鍵,移動滑動變阻器的滑動頭使其阻值減小,由兩個電壓表讀出若干組內、外電壓和的值.再斷開電鍵,由電壓表測出電動勢.分析實驗結果可以發現什么規律呢?
學生:在誤差許可的范圍內,內、外電壓之和等于電源電動勢.
板書:在閉合電路中,電源的電動勢等于內、外電壓之和,即.
下面我們來分析在整個電路中電壓、電流、電阻之間的關系.
教師:我們來做一個實驗,電路圖如圖所示
觀察電鍵S先后接通1和2時小燈泡的亮度.
結論:把開關撥到2后,發現小燈泡的亮度比剛才接3V的電源時還稍暗些.怎么解釋這個實驗現象呢?這就要用到我們將要學習的內容——閉合電路的歐姆定律.
板書:閉合電路的歐姆定律
教師:在圖1所示電路圖中,設電流為,根據歐姆定律,,,那么,電流強度,這就是閉合電路的歐姆定律.
板書:4、閉合電路的歐姆定律的內容:閉合電路中的電流強度和電源電動勢成正比,和電路的內外電阻之和成反比.表達式為.
同學們從這個表達式可以看出,在電源恒定時,電路中的電流強度隨電路的外電阻變化而變化;當外電路中的電阻是定值電阻時,電路中的電流強度和電源有關.
教師:同學們能否用閉合電路的歐姆定律來解釋上一個實驗現象呢?
學生:9V的電源如果內電阻很大,由閉合電路的歐姆定律可知,用它做電源,電路中的電流I可能較小;而電動勢3V的電源內阻如果很小,電路中的電流可能比大,用這兩個電源分別給相同的小燈泡供電,燈泡的亮度取決于,那么就出現了剛才的實驗現象了.
教師:很好.一般電源的電動勢和內電阻在短時間內可以認為是不變的.那么外電阻的變化,就會引起電路中電流的變化,繼而引起路端電壓、輸出功率、電源效率等的變化.
幾個重要推論
(1)路端電壓隨外電阻變化的規律
板書:5幾個重要推論
(l)路端電壓隨外電阻變化的規律演示實驗,圖3所示電路,
4節1號電池和1個10Ω的定值電阻串聯組成電源(因為通常電源內阻很小,的變化也很小,現象不明顯)移動滑動變阻器的滑動片,觀察電流表和電壓表的示數是如何隨變化?
教師:從實驗出發,隨著電阻的增大,電流逐漸減小,路端電壓逐漸增大.大家能用閉合電路的歐姆定律來解釋這個實驗現象嗎?
學生:因為變大,閉合電路的總電阻增大,根據閉合電路的歐姆定律,,電路中的總電流減小,又因為,則路端電壓增大.
教師:正確.我們得出結論,路端電壓隨外電阻增大而增大,隨外電阻減小而減小.一般認為電動勢和內電阻在短時間內是不變的,初中我們認為電路兩端電壓是不變的,應該是有條件的,當無窮大時,0,外電路可視為斷路,0,根據,則,即當外電路斷開時,用電壓表直接測量電源兩極電壓,數值等于電源的電動勢;當減小為0時,電路可視為短路,為短路電流,路端電壓.
板書5:路端電壓隨外電阻增大而增大,隨外電阻減小而減小.斷路時,∞,0,;短路時,,.
電路的路端電壓與電流的關系可以用圖像表示如下
(2)電源的輸出功率隨外電阻變化的規律.
教師:在純電阻電路中,當用一個固定的電源(設、r是定值)向變化的外電阻供電時,輸出的功率,
又因為,
所以,
當時,電源有最大的輸出功率.我們可以畫出輸出功率隨外電阻變化的圖線,如圖所示.
板書6:在純電阻電路中,當用一個固定的電源(即、是定值)向變化的外電阻供電時,輸出的功率有最大值.
教師:當輸出功率最大時,電源的效率是否也最大呢?
板書7:電源的效率隨外電阻變化的規律
教師:在電路中電源的總功率為,輸出的功率為,內電路損耗的功率為,則電源的效率為,當變大,也變大.而當時,即輸出功率最大時,電源的效率=50%.
板書8:電源的效率隨外電阻的增大而增大.
四、講解例題
五、總結
探究活動
1、調查各種不同電源的性能特點。
(包括電動勢、內阻、能量轉化情況、工作原理、可否充電)
2、考察目前對廢舊電池的回收情況。
(1)化學電池的工作原理;
(2)廢舊電池對環境的污染主要表現在哪些方面;
(3)當前社會對廢舊電池的重視程度;
(4)廢舊電池的回收由哪些主要的途徑和利用方式;
關鍵詞:經典理論 量子力學 聯系
中圖分類號:O413.1 文獻標識碼:A 文章編號:1672-3791(2016)08(a)-0143-02
量子力學于20世紀早期建立以來,經過飛速的發展,逐漸成為現代物理學科中不可分割的一部分。量子力學是現代量子理論的核心,它的發展不僅關乎人類的物質文明,還使人們對量子世界的認識有了革命性的進展[1]。
但是,量子力學并不是一個完備的理論,其體系中還存在許多問題,特別是微觀與宏觀,即經典理論與量子力學的聯系。為解決這些迷惑,歷史上相關科學家提出了很多實驗與理論。該文旨在以量子力學發展史上提出的幾個實驗為例,對其進行簡單分析,以展示經典理論與量子力學的聯系。
1 問題的提出
1935年3月,愛因斯坦等人在EPR論文中提出了“量子糾纏態”的概念,所謂的“量子糾纏態”是以兩個及以上粒子為對象的。在某種意義上,“量子糾纏態”可以理解為是把迭加態應用于兩個及以上的粒子。若存在兩個處于“量子糾纏態”的粒子,那這兩個粒子一定是相互關聯的,用量子力學的知識去理解,只要人們不去探測,那么每個粒子的狀態都不能夠確定。但是,假如同時使這兩個粒子保持某一時刻的狀態不變,也就是說,使兩個粒子的迭加態在一瞬間坍縮,粒子1這時會保持一個狀態不再發生變化,根據守恒定律,粒子2將會處于一個與粒子1狀態相對應的狀態。如果二者相距非常遙遠,又不存在超距作用的話,是不可能在一瞬間實現兩個粒子的相互通信的。但超距作用與當今很多理論是相悖的,于是,這里就形成了佯謬,即“EPR佯謬”。
同年,薛定諤提出了一個實驗,后人稱之為“薛定諤的貓”。設想把一只貓關在盒子里,盒中有一個不受貓直接干擾的裝置,這套裝置是由其中的原子衰變進行觸發,若原子衰變,裝置會被觸發,貓會立即死去。于是,量子力學中的原子核衰變間接決定了經典理論中貓的生死。由量子力學可知,原子核應該處于一種迭加態,這種迭加態是由“衰變”和“不衰變”兩個狀態形成的,那么貓應該也是處在一種迭加態,這種迭加態應該是由“死”與“生”兩個狀態形成的,貓的生死不再是一個客觀存在,而是依賴于觀察者的觀測。顯然,這與常理是相悖的[2]。
這兩個佯謬的根源是相同的,都是經典理論與量子理論之間的關系。
2 近代研究進展
2.1 驗證量子糾纏的存在
華裔物理學家Yanhua Shih[3]曾做過一個被稱為“幽靈成像”的實驗,其實驗過程及現象大致可以描述為:假設存在一個糾纏光源,這個光源可以發出兩種互為糾纏的光子,通過偏振器使兩種光子相互分離,令第一束光子通過一個狹縫,第二束不處理,然后觀察兩束光的投影,結果發現第二束光的投影形狀與第一束光通過的狹縫形狀完全相同。
人們發現,如果僅僅使用經典理論,實驗現象是無法解釋的,必須應用量子理論,才能解釋“幽靈成像”的現象。這個實驗也恰好驗證了“量子糾纏”現象的存在。
2.2 量子世界中的歐姆定律
歐姆定律是由德國物理學家Ohm于19世紀早期提出來的,它是一種基于觀察材料的電學傳輸性質得到的經驗定律,其內容是:在同一電路中,導體中的電流跟導體兩端所加的電壓成正比,跟導體自身電阻成反比,即 (U指導體兩端電壓;R指導體電阻;I指通過導體的電流)。
18世紀二、三十年代,人們認為經典方法在宏觀領域是正確的,但是在微觀領域將會被打破。Landauer公式給出了納米線電阻的計算方法,即(h為普朗克常量;e為電子電量;N為橫波模式數量);而在宏觀中,(為材料的密度;l為樣品的長度;s為樣品的橫截面積)。由此發現,在宏觀領域,樣品的電阻是隨著樣品的長度增加而增加的,而在微觀領域,樣品的電阻與樣品的長度沒有關系。
Weber[4]等人制備了原子尺度的納米線并進行觀察,實驗發現,在微觀領域,歐姆定律也是滿足的。Ferry[5]認為樣品的電阻是由多種機理所導致的,而他最后得到的結果正是由于多種機理的相互疊加。經過分析,他認為歐姆定律何時開始生效取決于納米線中電子耗散的力度,力度越大說明開始生效時的尺度越小。但這也同時引發了另一個問題的思考:低溫條件下,歐姆定律是仍然成立的,也就是說經典理論仍然成立,但往往是希望在低溫下研究比較純粹的量子效應。低溫條件下歐姆定律的成立要求在進行實驗研究時,必須花費更多的精力來使得經典理論與量子理論分離開。
2.3 生活中的量子力學――光合作用與量子力學
Scholes等[6]從兩種不同的海藻中提取出了一種名為捕光色素復合體的化學物質,并在其正常的生活條件下,通過二維電子光譜術對其作用機理進行了分析研究。他們首先使用了飛秒激光脈沖模擬太陽光來激發這些蛋白,發現了會長時間存在的量子狀態。也就是說,這些蛋白吸收的光能能夠在同一時刻存在于不同地點,而這實際上是一種量子迭加態。由此可見,量子力學與光合作用是有很大聯系的。
3 結語
從近幾年來量子力學的基本問題和相關的實驗研究可以看出,雖然經典理論與量子理論的聯系仍然是一個懸而未決的問題,但是當代科學家已經能夠通過各種精妙的實驗逐步解決歷史遺留的一個個謎團,使得微觀領域的單個量子的測量與控制成為可能,并且積極研究宏觀現象的微觀本質,將生活與量子力學逐漸的聯系起來。對于“經典理論與量子力學的聯系”這一專題還需要進行不斷研究,使量子力學得到進一步完善與發展。
參考文獻
[1] 孫昌璞.量子力學若干基本問題研究的新進展[J].物理,2001,30(5):310-316.
[2] 孫昌璞.經典與量子邊界上的“薛定諤貓”[J].科學,2001(3):2,7-11.
[3] Shih Y. The Physics of Ghost Imaging[J].2008.
[4] Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale[J].Science,2012,335(6064):64-67.
關鍵詞:《閉合電路歐姆定律》;教學設計;高中物理
一、教學設計
1.課題
閉合電路的歐姆定律(人教版普通高中課程標準實驗教科書選修3-1)
2.教材分析
本節內容是全章的重點,是歐姆定律的延伸,教材從能量入手,循序漸進地引導學生推出閉合電路的歐姆定律,教學過程簡單、學生易于接受。之后應用定律解決物理規律問題,使學生明白物理規律可以用已知定律從理論上導出,將理論應用于實際。
3.教學目標
知識與技能:①理解內、外電路及電源的內阻。②知道電源電動勢等于沒接入電路時兩極板間的電壓。③理解閉合電路的歐姆定律及其公式并能熟練地解決電路問題。過程與方法:①培養自主學習能力。②培養獨立思考、自主探究物理問題的能力。情感態度與價值觀:①激發學習興趣和求知欲。②培養嚴謹的科學態度和合作學習精神。
4.教學重、難點
教學重點:①閉合電路歐姆定律的內容。②路端電壓與電流的關系公式及圖像表示。教學難點:①閉合電路歐姆定律的應用。②路端電壓與負載的關系。
二、教學過程
1.自主學習
課前教師下發學案,學生根據學案進行預習,重點思考并回答以下問題:
(1)什么是電源?
(2)電源電動勢的概念和物理意義是什么?
(3)什么是內電路?什么是外電路?在回路中的電流方向如何?
(4)在內、外電路中電勢是如何變化的?
(5)怎樣計算內電路以及外電路中消耗的電能?
(6)如何計算電池內部非靜電力所做的功?
(7)內電路和外電路上消耗的電能與電源內部非靜電力做的功有什么關系?
(8)路端電壓與負載的關系是怎樣的?
【設計意圖】課前預習使學生將學習活動延伸到了課外,保證了學生思考的空間,增加了有效學習的時間。只有學生本人了解自己已經掌握了哪些知識,需要學習哪些知識,才能有針對性地進行相關復習、查閱資料,避免傳統課堂“一刀切”的現象,學生帶著問題積極主動地學習新知識,滿足了高中生思維發展和自我意識發展的需要,有利于開發學生學習物理的潛能。
2.交流探究
師友之間根據預習情況交流學習。由徒弟向師傅講解本節課的相關內容,師傅補充完善不足之處,在合作中解決疑難問題,突破重難點。教師巡視了解每對師徒的學習情況,對學習過程中存在疑問的師徒進行適當的指導,對學習深度不夠的師徒進行誘導點撥。如,有些師友根據理論知識推導出閉合電路的歐姆定律之后便欣然接受,此時教師應該提醒學生設計實驗對其進行驗證;在師友探討路端電壓與負載的關系之前,教師應提出問題:能否用實驗探究路端電壓與負載的關系,并引導師友合作設計實驗方案,完成實驗步驟,分析實驗數據完成U-I圖像,進而依據圖像解釋U、I的關系以及在短路、斷路中的特殊現象。
【設計意圖】該環節采用學生之間交流合作學習的方式完成本節課的教學內容,并在教師的點撥下激發了學生動手設計實驗驗證物理定律和探究物理規律的積極性,從而通過學生的親身經歷完成了教學重難點內容的學習。這一做法顛覆了傳統教學中教師“高高在上”的地位,而是十分“親民”走到學生之中參與、啟發、引導學生學習,消除了教師與學生之間的距離感。同時,學生之間通過交流不僅可以在學習上取長補短、互利共贏,更可以在性格上相互影響、共同發展,這樣不但能鍛煉學生與人交流合作的能力,又有利于開拓思路、培養他們的探索精神和創新能力。
3.互助提高
鼓勵學生積極上臺講解本節課自己學到的知識,板演相關例題,其他學生認真聽講并進行補充,也可以提出自己的質疑并闡述觀點進行全班討論。教師注意指導學生使用物理術語,規范學生的解題步驟,引導學生歸納需要注意的問題以及總結相關規律。
【設計意圖】全國教育心理學研究發現,大多數教師所青睞的講授式教學方式學生對知識的記住率只有5%,而極少數教師鼓勵的學生教別人的方法,使學生本人對知識的記住率高達95%。本環節中,教師把課堂真正讓位給學生,讓學生做主講,不但鍛煉了學生的表達能力,同時在學生教會其他同學時自己也會收獲新的體會,而全班同學的參與交流又可以各抒己見、集思廣益、通力合作,真正實現人人參與、人人發展、人人進步的高效課堂的發展趨勢。
4.總結歸納
教師組織學生一起梳理本節課的知識點,針對學生仍然不理解以及容易產生錯誤的知識點予以講解;明確學生易混、易錯、易漏的問題,對解題規律、注意事項、解題方法和技巧等進行全面的總結,歸納出知識體系,以便學生能夠得心應手的運用。例如,教師應強調閉合電路歐姆定律反映的只是電動勢與路端電壓的數量上的關系,他們的本質是不同的,電動勢反映了電源把其他形式的能轉化為電能的本領的大小,而路端電壓反映了外電路中電能轉化為其他形式能的本領的大小,因而用電壓表直接接在電源兩級上,其示數不等于電源電動勢,但很接近電源電動勢:U=IRV=?RV=,當RV>r時,U≈E。
【設計意圖】本節課的問題是由學生自己發現解決的,規律也是由學生自己探究驗證出來的,甚至例題都是學生自己解讀體悟的,可以說全程都是由學生自己完成的,因而在本環節中學生可以很容易地總結歸納出本節課的知識體系,真正做到將學來的知識變為自己所擁有的知識,實現學習效率的最大化。
5.當堂鞏固
教師根據學生對本節課內容的掌握情況出示有代表性的一或兩道典型題,學生在規定時間完成后師友當堂交換批改,之后交流做題心得與體會。教師檢查學生的掌握情況,布置課后作業。
【設計意圖】本環節的設計意在幫助學生檢驗學習成果,深化學生對各個知識點的認知,培養他們自行解決物理問題的信心和決心,端正學生的學習態度。同時,教師可以根據學生的掌握情況,及時反饋、適時調整并通過課后作業將學生的學習活動延伸到課下,為下節課埋下伏筆,使整堂課留有余味。
三、課堂教學設計建議
在設計學案時應當充分分析教材以及學生,做到環環相扣,循序漸進地引導學生完成自學;在學生進行交流探究時,教師應該注意學生探究的內容要與本節課的教學內容相關,探究要有深度不能屈于表面;在互助提高階段,教師應該積極鼓勵內向的學生大膽發言,提高其與同學溝通以及表達能力。本文中《閉合電路歐姆定律》的教學設計依據高中學生個性心理發展特點,通過課前預習以及課上互助式學習充分地調動學生的主觀能動性,有利于改變傳統教學方式在高中物理教學中出現的弊端,以便于為物理教師的有效教學提供參考。
參考文獻:
[l]李志剛.“和諧互助”式教學策略研究概述[J].中國教育學刊,2010,31(12).
[2]李志剛,吳越.活力課堂[M].上海:上海教育出版社,2009.
關鍵詞:物理;規律教學;思維
物理規律(包括定律、定理、原理、公式等)反映了物理現象、物理過程在一定條件下必然發生、發展和變化的規律,反映了物質運動變化的各個因素之間的本質聯系,揭示了物理事物本質屬性之間的內在聯系,是物理學科結構的核心。整個中學物理是以為數不多的基本概念和基本規律為主干的一個完整體系,物理基本概念是基石,基本規律是中心,基本方法是紐帶。要使學生掌握學科的基本結構,就必須讓學生學好基本規律。
縱觀整個初中物理,可以將物理規律分為以下三類:
1.實驗規律
物理學中的很多規律都是在觀察和實驗的基礎上,通過分析歸納總結出來的。我們把它們叫做實驗規律。如杠杠平衡原理、歐姆定律、阿基米德原理等。
2.理想規律
有些物理規律不能直接用實驗來證明,但是具有足夠數量的經驗事實。如果把這些經驗事實進行整理分析,抓住主要因素,忽略次要因素,推理到理想的情況下,總結出來的規律,這樣的規律我們把它叫做理想規律,如牛頓第一定律、真空不能傳聲等。
3.理論規律
有些物理規律是以已知的事實為根據,通過推理總結出來的,我們把它叫做理論規律。如并聯電路中電阻大小的計算等。
怎樣才能搞好規律教學呢?
1 聯系新舊知識、收集事實依據,學會研究物理規律的方法
物理規律本身反映了物理現象中的相互聯系、因果關系和有關物理量間的嚴格數量關系。因此在物理規律的教學中必須將原來分散學習的有關概念綜合起來。只有用聯系的觀點來引導學生研究新課題提出新問題才能激發學生新的求知欲與新的興趣。另一方面物理規律本身總是以一定的物理事實為依據的。因此學生學習物理規律也必須在認識、分析和研究有關的物理事實的基礎上來進行。尤其是初中學生他們的抽象思維能力不強理解和掌握物理規律更需要有充分的感性材料為基礎。
2 建立思維方法,理解物理規律
初中階段所研究的物理規律一般著重于用文字語言加以表達即用一段話把某一規律的物理意義表述出來,有些規律還用公式加以表達。對于物理規律的文字表述要認真加以分析,使學生真正理解它的含義而不是讓學生去死記結論。例如牛頓第一定律這一理想規律的教學就可采用“合理推理法”,即在實驗的基礎上進行推理想象,由有摩擦的情況推想到無摩擦時的運動情況,最后把這一規律的內容表述出來。在理解時要弄清定律的條件是“物體沒有受到外力作用”。還要正確理解“或”這個字的含義,“或”不是指物體有時保持勻速直線運動狀態有時保持靜止狀態,而是指如果物體原來是靜止它就保持靜止狀態,如果物體原來是運動的它就保持勻速直線運動狀態;許多理論物理規律的內容可以用數學形式表達出來就是公式。要使學生從物理意義上去理解公式中所表示的物理量之間的數量關系而不能從純數學的角度加以理解。例如:對于歐姆定律的表達式應當使學生理解這一公式表達了電流的強弱決定于加在導體兩端電壓的大小和導體本身電阻的大小,即某段電路中電流的大小與這段電路兩端的電壓成正比與這段電路中的電阻成反比,公式中的I、U、R三個物理量是對同一段電路而言的。把公式進行變換得到電阻的定義式R=U/I。如果不理解公式的物理意義就可能得出“電阻與電壓成正比”這一錯誤的結論。
3 明確物理規律的適用條件和范圍
每一個物理規律都是在一定的條件下反映某個物理現象或物理過程的變化規律,而規律的成立是有條件的。因此每一規律的適用條件和范圍也是一定的。學生只有明確規律的適用條件和范圍才能正確地運用規律來解決問題才能避免亂用規律、亂套公式的現象。例如,歐姆定律I=U/R,適用于金屬導體,不適用于高電壓的液體導電,不適用于氣體導電,不適用于含源電路或含有非線性元件的電路。而且I、U、R必須是同一段電路上的三個物理量。
4 認清關系,加以區別
物理規律總是與許多物理概念緊密聯系在一起的,與某些物理規律也是互相關聯的,應當使學生把物理規律與同它相關的物理概念和物理規律之間的關系搞清楚。如:牛頓第一定律與物體的慣性雖有聯系但二者有本質的區別不能混為一談。在教學中經常發現學生把慣性與運動狀態等同起來,把物體不受外力作用保持原來的運動狀態說成是“保持物體的慣性”。我們知道慣性是物體的固有屬性,物體無論是靜止還是運動、是否受力,任何時候都有慣性。而牛頓第一定律是一個反映這些客觀事實的物理規律,兩者不能混為一談。
5 聯系實際應用,掌握物理規律
關鍵詞:技校 電工基礎課 教學改革 抽象枯燥 直觀化
技校電工基礎課程教學打破舊的教學觀念,改革創新以學生為主體的教學模式,把抽象枯燥的理論知識直觀化是對技校電工基礎實施教學改革的指導思想。探索新的教學方法,讓學生真正掌握所學的知識,培養成合格的技術工人才是改革的目的。
一、電工基礎課程教學的現狀及弊端
電工基礎課是電工專業學生的一門專業基礎課,這門課程的理論性很強,而且相對來說有些抽象。對于剛剛接觸電工理論的中技學生而言,如何將難懂的,看不見摸不著的知識講得通俗易懂,激發學生的興趣,一直是教師頗費腦筋的問題。
現在,電工基礎課程有些概念過于抽象,學生不容易理解。萬事開頭難,只有頭開好了,學生覺得好學、好玩,才會慢慢喜歡這門課程,故課本上有些概念沒必要說得那么專業。畢竟,中技學生主要是以實習為主不是搞研究,對于理論課的內容,只要學生按照自己的思維方式把它消化吸收就可以了。
二、電工基礎課程教學方法改革的幾種設想
筆者以第一章《電路的基本知識和基本定律》內容談談教學改革問題。
1.關于§1-2電流
電流這個概念,課本上是這樣說的,“電荷的定向流動稱為電流”。課本上的這一定義毫無問題,但是,電荷是微觀的東西,說一根導線通電有電荷定向流動形成電流,肉眼是看不見的。如何使抽象的電荷形象化,加深學生對電流概念的理解呢?我們通過實際電工教學摸索,認為這一章中的多數概念用水來做比喻很恰當,能讓學生比較容易地接受電流概念。當然,雖然以水為例講解電的概念,在道理上有相通的地方,但本質上不同,這一點還應該向學生說明。教師可以對學生解釋說:水流的形成是水(分子)的定向流動,同理,電流的形成是電荷的定向流動,這樣,用水做對比,學生馬上就明白了。之后,趁熱打鐵,再用水流方向來對電流方向進行類推,也就不難了。再有,電流大小,課本上是這樣定義的“一定時間內通過導體橫截面的電荷量的多少”。對于“一定時間”和“導體橫截面”學生都能理解,因為不抽象,但對于“電荷量”即電量的理解,有點費勁。電量,顧名思義,電荷的數量,但是,它看不見,1庫侖電量怎樣理解呢?若以水流大小為例,單位時間內通過水管橫截面的水量叫水流大小或水流強度。這里,水管比喻為導體,水量比喻為電量,則這樣之后,也能加深對電流大小的理解。
2.關于§1-3電壓與電位
“電壓”的概念,課本上是這樣說的,“電場力把單位正電荷從電場中的a點移動到b點所做的功稱為兩點間的電壓”。我們覺得,沒必要這樣去對學生講,只需這樣去講,“水壓是對水(分子)的壓力,而電壓是對電荷的壓力”就可以了。
對于“電位”概念的理解,課本是這樣說的,“如果在電路中任選一點為參考點,那么電路中某點的電位就是該點到參考點之間的電壓”。電位這個概念比電壓更難理解。 我們仍然以水位為例,通過以水位參考點的不同,某點水位高度值也發生變化,讓學生理解電位的概念。比如,若以地面為參考點,a點水位為5米,b點水位為2米,若以地面以上5米為參考點,則a點水位為0米,b點水位為-3米;若以地面以下5米為參考點,則a點水位為10米,b點水位為7米。在這里,由于水位參考點選取的不同,各點水位值也發生了變化,并且有正水位、零水位、負水位。然后向學生說明,電位的概念和水位有相似之處,在電路中,由于參考點選取的不同,各點電位值也發生變化,并且有正電位、零電位、負電位,這樣對比,使學生形象地明白了電位的概念。繼續趁熱打鐵,不管水位的參考點如何變化,任意兩點比如a、b之間的水位的壓力差值是不變的,總是3米,因為參考點是人為選定的,顯然參考點不能影響水位的壓力差值,進而也形象地說明了電壓與電位差的關系即任意兩點電(水)壓等于兩點之間的電(水)位差。
3.關于§1-4電動勢
“電動勢”,課本上是這樣說的,“在電源內部,電源力將單位正電荷從電源負極移動到正極所做的功叫做電源的電動勢”。我們是這樣給學生解釋的,水在自然壓力即重力下,由高水位處流向低水位,若想由低水位處流向高水位,必須借助于外力。同理,正電荷在電壓的作用下,由高電位流向低電位,若想由低電位流向高電位,必須借助于外力即電源力才能實現,即“電荷”在電源力作用下有從高電位運“動”到低電位的趨“勢”簡稱電動勢。這樣,學生也好理解一些。
4.關于§1-6歐姆定律
歐姆定律內容如下:對于不含電源電路,當在電阻兩端加上電壓時,電阻中就有電流流過,流過電阻的電流與電阻兩端的電壓成正比,與電阻成反比。對于該定律,我們可采用的啟發式和對比式方法教學。水流是由于水(分子)的定向流動,那么,為什么水要定向流動,因為受到了壓力才定向流動;那么,為什么必須施加壓力才能讓水定向流動呢,因為水受到了阻力;(最后總結)顯然水流大小與水壓成正比,而與水受到的阻力成反比。對比,則電流是由于電荷的定向流動,那么,為什么電荷要定向流動,因為受到了壓力即電壓才定向流動;那么,為什么必須施加電壓才能讓電荷定向流動呢,因為電荷受到了阻力即電阻;最后總結,顯然電流大小與電壓成正比,而與電荷受到的阻力即電阻成反比,這就是歐姆定律。這樣,一步一步地把歐姆定律明白地講了出來,學生也很容易接受,之后,再理論聯系實際,馬上再通過一個實驗來驗證歐姆定律,最終使學生深入地理解這個重要定律。
5.關于§1-8電功與電功率
關于電功的概念,我們不用采取課本上的推導講解,可以采取擬人化,即將電荷比喻為人。我們知道,人干活,顯然人多,力氣大,時間長,干的活多,不妨理解為做功;同理,電荷干活的時候,在電壓(力)作用下,電荷運動干活做功,顯然電壓力(U)越大,電荷越多即I,時間t越長,電荷干活做功越多,從而推出電功W的定義電功多少與電壓U、電流I、時間t成正比,即W=UIt。再通過歐姆定律推出W=I2Rt=(U2/R)t,電功概念理解之后,電功率就好理解了,由于人干活的效率與時間成反比。同理,電功率就是電荷干活的效率,故也應與時間成反比,則電功率P=UI=I2R=U2/R。