時間:2024-01-29 15:35:14
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇歐姆定律成立條件范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
關鍵詞: 物理 歐姆定律 復習
在物理復習的整個知識體系中,電學知識板塊兒尤為重要。一是:它占整個三式合一理化試題物理部分的40%左右,即70分中的近30分屬于物理電學試題。二是:電學知識在生產實踐中的重要作用已凸顯出來。而要學生全面掌握、領會初中階段電學知識,對于相當一部分初中生來說具有較大的難度。從教以來我聽過一些初中電學復習課:有的先把所要用到的電學公式板書在黑板上,再講典型例題,接著練習;有的則通過學生作題中所反饋的問題對知識進行補充強調,再練習;有的直接強調萬變不離其宗,讓學生多看教材,然后講例題等。復習中講例題沒錯,但選擇的例題過多,又無代表性,既延長了復習時間,又不能使學生的知識得到升華。久而久之,學生疲勞,老師厭煩。要使復習課在短時間內生動、奏效,應選擇恰當的例題,在講例題的基礎上,對知識進行歸納和升華。
復習課,一要體現“從生活走向物理,從物理走向社會”,教學方式多樣化等新課程理念;二要體現“知識與技能、過程與方法以及情感態度和價值觀”三維目標的培養;三要優化學生的認知結構,讓學生在教師的引導、幫助下,把學到的知識歸納起來,從而便于提練和記憶。所以對電學的復習要從學生喜聞樂見的小電器起步,從典型例題入手進行歸納總結。
例1:如圖-1是一個玩具汽車上的控制電路。小明對其進行測量和研究發現:電動機的線圈電阻為1Ω,保護電阻R為4Ω。當閉合S后,兩電壓表的示數分別為6V和2V,則電路中的電流為?搖 ?搖?搖?搖A,電動機的功率為?搖?搖 ?搖?搖W。(這是陜西師范大學出版社出版,經陜西省中小學教材審定委員會2008年審定通過的《物理課堂練習冊》中的一道題)
學生通常按下列方法計算電路中的電流:
R中的電流:I=U/R=2V/4Ω=0.5A,
電動機中的電流:I=U/R=4V/1Ω=4A,
由此得第一空電路中的電流就有兩個值0.5A和4A。
于是第二空的對應值為:P=UI=4V×0.5A=2W與P=UI=4V×4A=16W。這就存在兩個問題:
1.根據歐姆定律計算出兩個串聯元件中的電流不相等,與串聯電路中電流的特點相矛盾。
2.由串聯分壓原理得:U:U=R∶R=1∶4,得:
①當U=2V時,U=8V,得到U+U=2V+8V=10V≠U源;
②當UM′=4V時,U′=1V。U′+U=1V+4V=5V≠U,這與串聯電路中的電壓關系相矛盾。
對此,應找出題中所涉及的知識點,分析這些知識點間的聯系,那上面的矛盾就迎刃而解了。
首先,應對歐姆定律有深入的理解。
例2:如圖2所示電路(R≠R≠R)。引導學生分析如下:
1.對電路狀態的分析。
(1)當S、S、S都閉合時,R與R并聯,并聯后作為一個整體再與R串聯。A測R中的電流,V測R或R兩端電壓。
(2)當S、S閉合S斷開時,則由圖-2演變為圖-2(a)到(b)。
R與R串聯,R處于斷開狀態,A測整個電路中的電流。
(3)當S、S閉合S斷開時,則由圖2演變為圖-2(c)到(d)。
R與R串聯,R處于斷開狀態,V測R兩端電壓。
2.歐姆定律中涉及I、U、R三個量間的關系。
(1)歐姆定律中的I、U、R三個量是針對同一個用電器或者同一部分電路而言的,即必須滿足“同一性”。
當圖-2中的S、S、S都閉合時,A測R中的電流為I,V測R兩端電壓為U。此時能否用U與I的比值來計算R或R阻值呢?(即R=U/I)。
如果R=R時,由于R與R并聯,所以R兩端電壓U等于R兩端電壓U,即U=U=U。根據R=U/I得R=U/I,R=U/I。這樣計算出的R2的值雖然是正確的,但屬于不正確的方法得出了正確的結果,實屬偶然巧合。
若R≠R時,那么R=U/I,若再按R=U/I來計算R的電阻值就沒有上述的巧合了。因為電壓相等是并聯電路電壓的特點,R、R中的電流是不相等的。上述中錯誤地認為R、R中電流相等。這里的電壓是R兩端電壓,而電流是R中的電流,電壓與電流是兩個不同電阻(或用電器,或電路)的對應量,也就違背了“同一性”。
這就告訴我們,在應用歐姆定律解題時,一定要遵循“同一性”原則,切忌“張冠李戴”,電學中的所有公式都不能違背“同一性”原則。如:W=UIt、Q=IRt、P=UI等。
(2)歐姆定律中的I、U、R三個量必須是同一狀態、同一時刻存在的三個物理量,即必須滿足“同時性”。
在圖-2中,當S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小是否相等?
在圖-2中,當S、S閉合S斷開時,不難看出,R與R串聯:I=I=I則I=U源/(R+R);當S、S閉合S斷開時,R與R串聯:I=I=I,則I=U/(R+R)。因為R+R≠R+R所以U源/(R+R)≠U源/(R+R),即兩次電流不相等。S、S閉合時,R中的電流大小與S、S閉合時R中的電流大小不相等,這是因為S、S閉合時與S、S閉合時電路狀態不同,R是在不同的狀態下工作,不是同一時間內電流的大小,電流不相等。
在利用公式計算的過程中,不能用第一狀態下的量值與第二狀態下的量值代入關系式計算。如:要計算R的電阻值,就不能用第一狀態下R兩端的電壓值與第二狀態下R中的電流的比值來計算R的電阻值。在計算電流、電壓時,也不能這樣處理。
因此在利用公式計算時,帶值入式的物理量必須是同一狀態下的物理量,必須滿足“同時性”。
(3)歐姆定律中的I、U、R三個量的單位必須同一到國際單位制,即I―A、U―V、R―Ω。即應滿足“統一性”。
除各物理量的主單位外,還應記住常用單位及其單位換算關系,將常用單位換算為國際單位制單位,在利用其它電學公式計算時也要統一單位。
如:電功的公式W=UIt中,各物理量的對應單位:U-V、I-A、t-S;這樣W的單位才是J。電熱的公式Q=IRt中:I―A、R―Ω、t―S;這樣Q的單位才是J。電功率的公式P=UI中:U-V、I-A,這樣P的單位才是W。
我們要確定歐姆定律的適用條件。
1.歐姆定律只對一段不含電源的導體成立,即只適用于純電阻電路。因此,歐姆定律又稱為一段不含源電路的歐姆定律。
例1中涉及到電磁轉換的知識,電動機工作時實質上也是一個發電機。電動機工作時,其閉合線圈切割磁感線會產生感應電流,所產生的感應電流對流過電動機線圈中的電流有一定影響。
實際上圖1相當于一個“RL”串聯電路,總電壓的有效值不等于各分電壓有效值的代數和,即U≠U+U。但得到的電流有效值的關系I=U/Z與直流(或部分)電路的歐姆定律相似,各元件上的分電壓與該元件的阻抗(Z)成正比。
雖然電動機工作時產生的阻抗目前初中階段無法計算出來,但無論電動機工作時產生的阻抗為多少,電路中的電流都等于電阻R中的電流,即I=U/R=2V/4Ω=0.5A。電動機兩端的實加電壓等于總電壓(電源電壓)減去電阻R兩端的電壓,即U=U-U=6V-2V=4V。則電動機的功率為:P=UI=4V×0.5A=2W。
本文為全文原貌 未安裝PDF瀏覽器用戶請先下載安裝 原版全文
上述分析說明,電阻R所在的這部分電路與電動機所在的這部分電路有著本質的不同。從能量轉化的角度看:電阻R所在的這部分電路是將電能全部轉化為熱能;而電動機所在的這部分電路電能只有少部分轉化為熱能,大部分轉化為機械能。前者屬于純電阻電路,后者屬于非純電阻電路。
歐姆定律只適用于純電阻電路,即用電器工作的時候電能全部轉化為內能的電路。例如電熨斗、電暖氣、電熱毯、電飯鍋、熱得快等。而電動機、電風扇,等等,除了發熱外,還對外做功,所以這些是非純電阻電路,歐姆定律不再適用。由歐姆定律導出的公式也只適用于純電阻電路(如:W=IRt W=U/Rt Q=UIt Q=U/Rt P=IR P=U/R等。)
2.歐姆定律適用于金屬導體和通常狀態下的電解質溶液;但是對于氣態導體(如日光燈管中的汞蒸氣)和其它一些導電元器件,歐姆定律不成立。歐姆定律對某一導體是否適用,關鍵是看該導體的電阻是否為常數。當導體的電阻是不隨電壓、電流變化的常數時,其電阻叫線性電阻或歐姆電阻,歐姆定律對它成立;當導體的電阻隨電壓、電流變化時,其電阻叫非線性電阻,如:電子管、晶體管、熱敏電阻等,歐姆定律對它不成立。
3.歐姆定律只有在等溫條件下,即導體溫度保持恒定時才能成立。當導體溫度變化時,歐姆定律對該導體不成立,因為電阻是溫度的函數。
在講解歐姆定律的應用時,常舉白熾燈的例子,實際上白熾燈的鎢絲在溫度變化很大時電阻具有非線性,隨著電流的增大,鎢絲的溫度升高很多,其電阻也隨著變化。對非線性電阻,歐姆定律不成立,但是作為電阻定義的關系式R=U/I仍然成立,只不過對非線性電阻,R不再是常量。
綜上所述,例1中第一空電路中的電流有兩個值0.5A和4A,一個是在純電阻電路(電阻R)中用歐姆定律算出的電流0.5A。另一個是用歐姆定律計算在非純電阻電路(含電動機的電路)中的電流為4A,顯然不對。
通過對例1的全面、透徹的分析,我們對電學知識得到了進一步升華:(1)判斷電路的連接方式;(2)判斷電表的作用;(3)利用歐姆定律解決實際問題時必須注意“三性”;(4)復習了電功率、焦耳定律等相關電學公式;(5)歐姆定律的適用范圍。
學生能夠領悟到,復習不是為了解題,而是要掌握知識的前后聯系,優化知識結構;仔細觀察,認真分析;發散思維,以點帶面;舉一反三,融會貫通。這樣,從而體現出知識與技能、過程與方法,以及情感態度和價值觀的培養。
參考文獻:
[1]王較過.物理教學論.陜西師范大學出版社,2003.
[2]閻金鐸,田世坤.初中物理教學通論.高等教育出版社,1989.
[3]梁紹榮等.普通物理學―電磁學高等教育出版社,1988.
[4]新課程實施難點與教學對策案例分析叢書,(初中卷).中央民族大學出版社.
(1)牛頓第一定律。采用邊講、邊討論、邊實驗的教法,回顧“運動和力”的歷史。消除學生對力的作用效果的錯誤認識;培養學生科學研究的一種方法——理想實驗加外推法。教學時應明確:牛頓第一定律所描述的是一種理想化的狀態,不能簡單地按字面意義用實驗直接加以驗證。但大量客觀事實證實了它的正確性。第一定律確定了力的涵義,引入了慣性的概念,是研究整個力學的出發點,不能把它當做第二定律的特例;慣性不是狀態量,也不是過程量,更不是一種力。慣性是物體的屬性,不因物體的運動狀態和運動過程而改變。在應用牛頓第一定律解決實際問題時,應使學生理解和使用常用的措詞:“物體因慣性要保持原來的運動狀態,所以……”教師還應該明確,牛頓第一定律相對于慣性系才成立。地球不是精確的慣性系,但當我們在一段較短的時間內研究力學問題時,常常可以把地球看成近似程度相當好的慣性系。
(2)牛頓第二定律。在第一定律的基礎上,從物體在外力作用下,它的加速度跟外力與本身的質量存在什么關系引入課題。然后用控制變量的實驗方法歸納出物體在單個力作用下的牛頓第二定律。再用推理分析法把結論推廣為一般的表達:物體的加速度跟所受外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。教學時還應請注意:公式F=Kma中,比例系數K不是在任何情況下都等于1;a隨F改變存在著瞬時關系;牛頓第二定律與第一定律、第三定律的關系,以及與運動學、動量、功和能等知識的聯系。教師應明確牛頓定律的適用范圍。
(3)萬有引力定律。教學時應注意:①要充分利用牛頓總結萬有引力定律的過程,卡文迪許測定萬有引力恒量的實驗,海王星、冥王星的發現等物理學史料,對學生進行科學方法的教育。②要強調萬有引力跟質點間的距離的平方成反比(平方反比定律),減少學生在解題中漏平方的錯誤。③明確是萬有引力基本的、簡單的表式,只適用于計算質點的萬有引力。萬有引力定律是自然界最普遍的定律之一。但在天文研究上,也發現了它的局限性。
(4)機械能守恒定律。這個定律一般不用實驗總結出來,因為實驗誤差太大。實驗可作為驗證。一般是根據功能原理,在外力和非保守內力都不做功或所做的總功為零的條件下推導出來。高中教材是用實例總結出來再加以推廣。若不同形式的機械能之間不發生相互轉化,就沒有守恒問題。機械能守恒定律表式中各項都是狀態量,用它來解決問題時,就可以不涉及狀態變化的復雜過程(過程量被消去),使問題大大地簡化。要特別注意定律的適用條件(只有系統內部的重力和彈力做功)。這個定律不適用的問題,可以利用動能定理或功能原理解決。
(5)動量守恒定律。歷史上,牛頓第二定律是以F=dP/dt的形式提出來的。所以有人認為動量守恒定律不能從牛頓運動定律推導出來,主張從實驗直接總結。但是實驗要用到氣墊導軌和閃光照相,就目前中學的實驗條件來說,多數難以做到。即使做得到,要在課堂里準確完成實驗并總結出規律也非易事。故一般教材還是從牛頓運動定律導出,再安排一節“動量和牛頓運動定律”。這樣既符合教學規律,也不違反科學規律。
(6)歐姆定律。中學物理課本中歐姆定律是通過實驗得出的。公式為I=U/R或U=IR。教學時應注意:①“電流強度跟電壓成正比”是對同一導體而言;“電流強度跟電阻成反比”是對不同導體說的。②I、U、R是同一電路的3個參量。③閉合電路的歐姆定律的教學難點和關鍵是電動勢的概念,并用實驗得到電源電動勢等于內、外電壓之和。然后用歐姆定律導出I=ε/(R+r)(也可以用能量轉化和守恒定律推導)。④閉合電路的歐姆定律公式可變換成多種形式,要明確它們的物理意義。⑤教師應明確,普通物理學中的歐姆定律公式多數是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,導體就不服從歐姆定律。但不論導體服從歐姆定律與否,R=U/I這個關系式都可以作為導體電阻的一般定義。中學物理課本不把 R=U/R列入歐姆定律公式,是為了避免學生把歐姆定律公式跟電阻的定義式混淆。這樣處理似乎欠妥。
[關鍵詞]:歐姆定律;物理結論;表述;形成過程
中圖分類號:G4
物理結論常用的表達方式有:文字敘述、數學語言表達、特定表示法,初中物理中以文字敘述最為常見。物理結論的表述要求科學、準確,同時必須注意結論的嚴密性和邏輯性。物理結論的形成通常建立在數據分析和因果關系分析,這兩種關系的分析一般采用控制變量的研究方法,如果能知道一個現象的發生是由于某個原因引起的,又能從該現象和某原因之間所存在的數量關系中找出規律,只要把這兩個方面概括起來進行描述,就很容易得出實驗結論。下面結合歐姆定律的形成和理解,就同學們表述物理結論時出現的錯誤,談談物理結論的準確表述及形成過程。
歐姆定律這一基本規律,是初中電學知識的基礎和重點,可以說它是解決電學問題的一把金鑰匙。它揭示了電流、電壓、電阻三者之間的定量關系,是利用控制變量法在實驗的基礎上歸納總結出來的。即控制電阻不變,得到通過導體中的電流跟導體兩端的電壓成正比;控制導體兩端的電壓不變,得到通過導體中的電流跟導體的電阻成反比。教材(北師大版九年級物理教材)中表述為:導體中的電流,跟導體兩端的電壓成正比,跟導體的電阻成反比。它的表達式為:,表示導體中的電流的大小取決于這段導體兩端的電壓和這段導體的電阻,當導體兩端的電壓(U)或導體本身的電阻(R)變化時,通過導體的電流(I)將發生相應的變化。其中電流(I)、電壓(U)、電阻(R) 這三個物理量必須是對應于同一導體(或同一段電路)在同一時刻(或同一段時間),也可以說是"一一對應"的,即應用歐姆定律時,必須講究同一性和同時性。用它進行計算時,帶入數據的單位必須統一為國際單位。另外,它還反映了導體兩端保持一定的電壓,是導體形成持續電流的條件。若導體本身的電阻(R)不為零,兩端的電壓(U)為零,則通過導體的電流(I)也為零,也就是,給一導體兩端不加電壓,就沒有電流通過;若導體是絕緣體電阻(R)可為無窮大,即使它的兩端有電壓(U),通過導體的電流(I)也為零,電流無法通過。
而通過歐姆定律得到的變形式表示一段導體兩端的電壓跟這段導體中的電流之比是一個不變的值,等于這個導體的電阻,它是電阻的計算式,而不是它的決定式。導體的電阻反映了導體本身的一種性質,是表示導體對電流阻礙作用的本領大小,其大小只決定于導體的材料、長度、橫截面積和溫度,跟導體兩端的電壓和導體中有無電流無關,不能受數學的思維定勢影響。
例題:某同學在做"探究通過導體的電流與電阻的關系"的實驗中,收集了一些實驗數據如下表,由表內數據可得的結論是:___________。【電壓U=3V】
電流I/A
0.3
0.2
0.1
電阻R/Ω
10
15
30
【錯誤結論之一】當導體兩端的電壓一定時,導體的電阻跟通過導體的電流成反比。
【病因】顛倒因果關系,犯邏輯錯誤
【分析 】原因和結果,在物理實驗中,通常表現為物理條件和現象,物理條件是原因,物理現象是結果,物理條件的改變引起了物理現象的變化。因此要歸納科學規律,一方面要關注物理條件改變與物理現象變化之間的聯系,另一方面還要注意兩個物理量的因果關系,不能前后顛倒。由于通過導體的電流跟導體兩端的電壓和導體的電阻這兩個因素有關,因此本實驗探究通過導體的電流跟電阻的關系的方法是:保持導體兩端電壓不變,通過改變導體的電阻,來觀察電流的變化情況。電阻的變化是原因,電流的變化是結果。因此,表述這類問題必須首先明確"那是因、哪是果"。
【錯誤結論之二】當導體兩端的電壓一定時,導體的電阻越大,導體中的電流就越小。或者,當導體兩端的電壓一定時,導體的電阻隨導體中的電流的增大而減小。
【病因】混淆定量描述與定性分析
【分析】從表中電流、電阻的實驗數據的規律表明:當導體兩端的電壓一定時,導體的電阻增大為原來的幾倍,導體中的電流就減小為原來的幾分之一。兩個物理量之間存在反比關系,屬于定量關系,上述錯誤卻表達為×××隨×××的增大而減小,屬于定性關系,不準確。
【錯誤結論之三】導體中的電流跟導體的電阻成反比。
【病因】注重結果,忽視條件
【分析】物理結論都有其成立的條件,表達時如果忽視了成立的條件,就是不準確的,甚至是錯誤的,這類問題常常用控制變量探究問題,分析實驗數據時,要分清哪個因素是自變量(引起實驗結果變化的原因),哪個因素是因變量(實驗結果,其變化是由其它因素的變化引起的),哪個因素是不變量(包括相等的量),最后得出正確結論,其格式一般為"在......不變(或相等)的情況下(條件) ......(結果)"
本人在長期的教學實踐中總結出,物理結論的形成一般分為以下四步:
(1)、抓問題。就是通過審題弄清要研究的問題,即研究對象。也就是說首先明確被研究量及相關的各個因素。上述問題研究的是通過導體的電流跟導體的電阻的關系。
(2)、找條件。確定結論成立的條件,即找出題目中給出的條件或控制哪些量不變。上述題目中給出導體兩端的電壓不變。
(3)、論關系。利用題目中的數據或現象分析物理量之間的變化關系或規律,同時明確物理量之間的因果關系。從表中電流、電阻的數據變化中可以發現:導體的電阻增大為原來的幾倍,導體中的電流就減小為原來的幾分之一。也就是說通過導體的電流跟導體的電阻成反比。
關鍵詞:經典理論 量子力學 聯系
中圖分類號:O413.1 文獻標識碼:A 文章編號:1672-3791(2016)08(a)-0143-02
量子力學于20世紀早期建立以來,經過飛速的發展,逐漸成為現代物理學科中不可分割的一部分。量子力學是現代量子理論的核心,它的發展不僅關乎人類的物質文明,還使人們對量子世界的認識有了革命性的進展[1]。
但是,量子力學并不是一個完備的理論,其體系中還存在許多問題,特別是微觀與宏觀,即經典理論與量子力學的聯系。為解決這些迷惑,歷史上相關科學家提出了很多實驗與理論。該文旨在以量子力學發展史上提出的幾個實驗為例,對其進行簡單分析,以展示經典理論與量子力學的聯系。
1 問題的提出
1935年3月,愛因斯坦等人在EPR論文中提出了“量子糾纏態”的概念,所謂的“量子糾纏態”是以兩個及以上粒子為對象的。在某種意義上,“量子糾纏態”可以理解為是把迭加態應用于兩個及以上的粒子。若存在兩個處于“量子糾纏態”的粒子,那這兩個粒子一定是相互關聯的,用量子力學的知識去理解,只要人們不去探測,那么每個粒子的狀態都不能夠確定。但是,假如同時使這兩個粒子保持某一時刻的狀態不變,也就是說,使兩個粒子的迭加態在一瞬間坍縮,粒子1這時會保持一個狀態不再發生變化,根據守恒定律,粒子2將會處于一個與粒子1狀態相對應的狀態。如果二者相距非常遙遠,又不存在超距作用的話,是不可能在一瞬間實現兩個粒子的相互通信的。但超距作用與當今很多理論是相悖的,于是,這里就形成了佯謬,即“EPR佯謬”。
同年,薛定諤提出了一個實驗,后人稱之為“薛定諤的貓”。設想把一只貓關在盒子里,盒中有一個不受貓直接干擾的裝置,這套裝置是由其中的原子衰變進行觸發,若原子衰變,裝置會被觸發,貓會立即死去。于是,量子力學中的原子核衰變間接決定了經典理論中貓的生死。由量子力學可知,原子核應該處于一種迭加態,這種迭加態是由“衰變”和“不衰變”兩個狀態形成的,那么貓應該也是處在一種迭加態,這種迭加態應該是由“死”與“生”兩個狀態形成的,貓的生死不再是一個客觀存在,而是依賴于觀察者的觀測。顯然,這與常理是相悖的[2]。
這兩個佯謬的根源是相同的,都是經典理論與量子理論之間的關系。
2 近代研究進展
2.1 驗證量子糾纏的存在
華裔物理學家Yanhua Shih[3]曾做過一個被稱為“幽靈成像”的實驗,其實驗過程及現象大致可以描述為:假設存在一個糾纏光源,這個光源可以發出兩種互為糾纏的光子,通過偏振器使兩種光子相互分離,令第一束光子通過一個狹縫,第二束不處理,然后觀察兩束光的投影,結果發現第二束光的投影形狀與第一束光通過的狹縫形狀完全相同。
人們發現,如果僅僅使用經典理論,實驗現象是無法解釋的,必須應用量子理論,才能解釋“幽靈成像”的現象。這個實驗也恰好驗證了“量子糾纏”現象的存在。
2.2 量子世界中的歐姆定律
歐姆定律是由德國物理學家Ohm于19世紀早期提出來的,它是一種基于觀察材料的電學傳輸性質得到的經驗定律,其內容是:在同一電路中,導體中的電流跟導體兩端所加的電壓成正比,跟導體自身電阻成反比,即 (U指導體兩端電壓;R指導體電阻;I指通過導體的電流)。
18世紀二、三十年代,人們認為經典方法在宏觀領域是正確的,但是在微觀領域將會被打破。Landauer公式給出了納米線電阻的計算方法,即(h為普朗克常量;e為電子電量;N為橫波模式數量);而在宏觀中,(為材料的密度;l為樣品的長度;s為樣品的橫截面積)。由此發現,在宏觀領域,樣品的電阻是隨著樣品的長度增加而增加的,而在微觀領域,樣品的電阻與樣品的長度沒有關系。
Weber[4]等人制備了原子尺度的納米線并進行觀察,實驗發現,在微觀領域,歐姆定律也是滿足的。Ferry[5]認為樣品的電阻是由多種機理所導致的,而他最后得到的結果正是由于多種機理的相互疊加。經過分析,他認為歐姆定律何時開始生效取決于納米線中電子耗散的力度,力度越大說明開始生效時的尺度越小。但這也同時引發了另一個問題的思考:低溫條件下,歐姆定律是仍然成立的,也就是說經典理論仍然成立,但往往是希望在低溫下研究比較純粹的量子效應。低溫條件下歐姆定律的成立要求在進行實驗研究時,必須花費更多的精力來使得經典理論與量子理論分離開。
2.3 生活中的量子力學――光合作用與量子力學
Scholes等[6]從兩種不同的海藻中提取出了一種名為捕光色素復合體的化學物質,并在其正常的生活條件下,通過二維電子光譜術對其作用機理進行了分析研究。他們首先使用了飛秒激光脈沖模擬太陽光來激發這些蛋白,發現了會長時間存在的量子狀態。也就是說,這些蛋白吸收的光能能夠在同一時刻存在于不同地點,而這實際上是一種量子迭加態。由此可見,量子力學與光合作用是有很大聯系的。
3 結語
從近幾年來量子力學的基本問題和相關的實驗研究可以看出,雖然經典理論與量子理論的聯系仍然是一個懸而未決的問題,但是當代科學家已經能夠通過各種精妙的實驗逐步解決歷史遺留的一個個謎團,使得微觀領域的單個量子的測量與控制成為可能,并且積極研究宏觀現象的微觀本質,將生活與量子力學逐漸的聯系起來。對于“經典理論與量子力學的聯系”這一專題還需要進行不斷研究,使量子力學得到進一步完善與發展。
參考文獻
[1] 孫昌璞.量子力學若干基本問題研究的新進展[J].物理,2001,30(5):310-316.
[2] 孫昌璞.經典與量子邊界上的“薛定諤貓”[J].科學,2001(3):2,7-11.
[3] Shih Y. The Physics of Ghost Imaging[J].2008.
[4] Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale[J].Science,2012,335(6064):64-67.
關鍵詞:電動機;純電阻與非純電阻;電路分析
在直流電路中,通過電阻的電流產生的能量轉化是能量計算的重點知識,但由于不能夠正確區分純電阻與非純電阻,導致求解中出現問題,特別含有電動機的相關計算。下面以電動機為例,來解決純電阻與非純電阻應用中的區別與聯系。
一、過程再現及分析
含有電動機電路,有電流通過電動機時,線圈消耗電能,產生其他形式能量(內能、機械能等),該能量轉化過程為電流做功的過程,即消耗電功W=UIt,電流通過線圈產生的焦耳熱Q=I2Rt,那么,兩者之間有何關系呢?
解決方案:假如Q=W,則UIt=I2Rt,推導出I=,即歐姆定律,而歐姆定律是需在純電阻情況下才成立的。
分析:根據歐姆定律的適用條件,電流通過電阻產生的電能全部轉化為內能,即電功等于電熱,此時由歐姆定律適用的電路叫做純電阻電路;歐姆定律不適用的電路叫做非純電阻電路。
問題設計1:電機在受阻不轉動的情況下,電壓、電流和電阻的存在的何種關系,消耗的電能和產生的電熱有何關系?
問題設計2:電動機在轉動的狀態下,電壓、電流和電阻的關系有何特點,消耗的電能和產生的電熱有何關系?
問題設計意圖:明確辨別純電阻電路與非純電阻電路。
問題設計3:進一步探究電機在受阻不轉動的情況下,電壓、電流和熱功率、總功率的有何關系?
探究結果:在純電阻電路中,熱功率在總功率中所占比重大,純電阻電路產生的電熱近似等于消耗的電功,即W=Q。
問題設計4:探究電動機在正常轉動的情況下,電壓、電流和熱功率、總功率之間有何關系?
探究結果:在非純電阻電路中,熱功率在總功率中所占比重小。根據能量守恒,W=E+Q,即電動機消耗的電能等于產生的機械能及產生的熱量的總和。
二、例題分析
工地經常用電動機提升重物,其裝置如圖所示,電動機兩端電壓為5V,電路中的電流為1A,物體A重20N,電動機線圈的電阻為r=1Ω。求:
(1)電動機正常工作時,線圈電阻消耗的熱功率為多少?
(2)電動機正常工作時,電動機輸入功率和輸出功率各是多少?
(3)如果接上電源后,線圈被卡住,不能轉動,這時通過電動機的電流,以及電動機消耗的電功率和發熱功率是多少?
解析:電動機正常工作時,其電路為非純電阻電路,其中消耗的電功率一部分轉化為線圈的熱功率,另一部分轉化為電動機的機械功率。
(1)電動機線圈上消耗的熱功率為
P熱=I2r=12×1W。
(2)電動機的輸入功率為消耗的電功率
P入=UI=5×1W=5W
電動機的輸出功率
P出=P入-P熱=5W-1W=4W。
(3)線圈被卡住后電動機不轉時可視為純電阻,通過電動機的電流
I==5A
電動機消耗的電功率
P=UI=5×5W=25W
電動機發熱功率
P內=I2R=52×1W=25W
小結:由例題中不難看出U、R、P三個物理量的數值并不滿足歐姆定律,而根據對電路能量轉化分析,解決有關純電阻電路和非純電阻電路的問題,就比較清楚了。
從上面的實驗探究與例題可見,含有電動機工作過程中的能量的計算,關鍵是要正確區分是純電阻還是非純電阻電路,其能量關系是:電流通過非純電阻時,E總=Q熱+E其他;電流通過純電阻時,E總=Q熱。
參考文獻:
基爾霍夫定律建立在電荷守恒定律、歐姆定律及電壓環路定理的基礎之上,在穩恒電流條件下嚴格成立。
基爾霍夫電流定律,也稱為節點電流定律,內容是電路中任一個節點上,在任一時刻,流入節點的電流之和等于流出節點的電流之和。
應用基爾霍夫定律時,應先在回路中選定一個繞行方向作為參考,則電動勢與電流的正負號就可規定如下: 電動勢的方向 與繞行方向一致時取正號,反之取負號;同樣,電流的方向與繞行方向一致時取正號,反之取負號。
基爾霍夫電路定律既可以用于直流電路的分析,也可以用于交
(來源:文章屋網 )
其實,再難的學習內容只要我們能夠掌握其中的方法、技巧、要領,注重練習,善于總結,就能達到“山重水復疑無路,柳暗花明又一村”的境界。這里筆者結合教學實踐,談談從根本上解決這個問題的點滴體會。
一、聯系生活實踐,多動手腦,培養興趣
讓物理融入生活,是物理教學的初衷;從生活走向物理,則是物理教學的途徑。電學知識與我們的生活聯系非常緊密。為什么燈泡用久了會發黑?為什么燈泡絲要做成螺旋狀?電飯煲是如何煮飯的?探究起來,妙趣無窮。
因此,鼓勵學生聯系生活實際,是學以致用的需要,是物理知識化難為簡的需要,更是激發學生學習興趣的需要。“興趣是最好的老師”,有了興趣就有了成功的動力。
在實驗課上,我們可以設置與生活息息相關、讓學生感興趣的實驗幫助學生理解相關電學知識。例如,在課后習題中有一個興趣實驗“自制水果電池”,學生可以進行分組探究,每個小組都可以向實驗室借一只電壓表和一些導線,每個小組成員都自備不同種類的水果和蔬菜。通過實驗去探究水果電池的正負極,水果電池的電壓的影響因素等。最后讓各個小組展示他們的研究成果。這不僅滿足了學生的求知欲,還最大限度地激發了學生的學習興趣。
其實,四驅車、自制電鈴、簡易電話……學生完全可以利用所學的電學知識自己設計完成。教師應當鼓勵學生在保證安全的前提下自己動腦動手進行這些小制作,并給予學生適當展示成果的機會,呵護學生“破壞和創造”的熱情。這樣既培養了學生的動手操作能力,又提高了學生的設計實驗的水平,讓學生在實驗中體驗了成功的快樂。
二、打好基礎,發展學生思維
學好電學知識要抽絲剝繭,抓住重點,即應牢固掌握基本概念、基本定理和主要公式。
1.明確每個符號的物理意義,能掌握電學的基本規律。電學基礎知識包括“五概念四規律”,即電流、電壓、電阻、電功、電功率;歐姆定律、焦耳定律、串聯電路的特點、并聯電路的特點。對于以上重點概念,能讓學生知道為什么引入它們,如何定義,單位是什么(對物理量),有什么重要應用等;對于規律,應著重理解它們反映的是哪些物理量、有什么樣的關系或變化規律、這些規律的成立條件和適用范圍是什么。學習時,要分清主次、突出重點,以重點帶動一般,切勿平均使用力量。
2.能掌握公式的使用條件,對公式進行正確變形,并能熟記和應用。理解這些規律可以,例如,數學中a=c/b說明a與b成反比,a與c成正比,但在物理ρ=m/V定義式中,ρ與m、V的大小無關;在I=U/R中,卻有I與U成正比,I與R成反比等,這就要求學生對物理的基本概念理解深刻。
又例如,在學習“電路連接的基本方式”后,利用串聯電路只有一條電流路徑的特點及開關與用電器一般串聯的知識,向學生提出這樣一個問題:一個電路中有一個電源,一個開關S,兩個燈泡L1和L2,且這兩個燈泡串聯,當開關S斷開時,L1、L2均發亮,但S閉合后,L1不發光,L2發光,這種情況是否存在?若存在畫出可能的電路圖。由于已有知識的干擾,將學生置于“矛盾”之中。學生只有敢于想象,沖出開關只能與用電器串聯的定勢,才能解決這個問題,既加深了知識的理解,又鍛煉了思維的深刻性和廣闊性。
三、重視畫圖和識圖
學習物理離不開圖形。復雜電路設計,都是主要依靠“圖形語言”來表述的,圖像能夠變抽象思維為形象思維,更精確地掌握物理過程,有了圖就能作狀態分析和動態分析。
例如,在計算有關電路的習題時,已給出的電路圖往往很難分析出電路的連接方式,而電路連接的方式不清楚,就無法正確選用串、并聯電路的規律。如果能熟練地將所給出的電路圖畫成等效電路圖,就會很容易地看出電路的連接特點,使有關問題迎刃而解。
對于這部分內容的學習,教師應當明確歐姆定律應用于某一電阻還是整個電路,教會學生根據現成的圖形學會識圖、繪圖。教師對于學生電路圖的學習,一定要有耐心,畢竟學生開始接觸電學,不可能一下就能掌握和識別電路圖。尤其是開始接觸電路圖,一定要每個圖都幫助學生分析到位,這里寧可慢一點,也要為學生打下扎實的基礎,有了識別電路圖的本領,學習歐姆定律及計算,難度會相應減小許多。
四、引導學生做好實驗
實驗教學,還應注意把所學的物理知識與日常生活、生產中的現象結合起來,其中也包含與物理實驗現象的結合,因為大量的物理規律是在實驗的基礎上總結出來的。在認真完成課內規定實驗教學的基礎上,還可以布置一些學生自己設計的實驗。
例如,可以設計在缺少電流表或缺少電壓表的條件下測量未知電阻的實驗。這些都需要同學們自己獨立思考、探索,不斷提高自己的觀察、判斷、發散思維等能力,使自己對物理知識的理解更深刻。
五、引導學生做好綜合應用題
電學知識頭緒多,綜合性強,做綜合應用題時,學生往往感到無從下手,稍有疏忽就會造成錯誤。在教學中,教師應在以下兩個方面起引導作用。
第一方面,學生在解題過程中由于物理知識理解不透,常會出現生搬硬套的現象,這時,教師要找準癥結給予指點。
例如,在學過“電功率知識”后,學生討論“220 V,40 W”和“220 V,100 W”兩盞燈串聯在電路中,哪個更亮?大多數學生會認為:100 W的燈泡比40 W的燈泡更亮,這說明學生被燈泡的額定功率所迷惑,而忽視了燈泡的明暗程度與燈泡的實際功率有關。找到癥結后,教師讓學生思考“220 V,40 W”和“220 V,100 W”的兩個燈泡,哪個電阻大?將它們串聯起來,通過它們的電流大小怎樣?最后引導學生利用公式“P=I■R”來判斷哪個燈泡會更亮。
第二方面,對于難度較大的題目,教師應采用降低梯度,分設疑點的方法,將學生引向正確軌道。
根據物理學本身的特點,可把物理學科的學習方法概括為三要素:一是要科學地進行觀察和實驗,二是要重視對物理概念和規律的理解,三是要理論聯系實際,下面給大家分享一些關于高一物理的學習小技巧,希望對大家有所幫助。
一、物理現象觀察法物理學是以實驗為基礎的科學,初中物理要求學生具有的觀察能力主要是:有目的地觀察,明了觀察對象的主要特征及其變化的條件。觀察物理現象應該做到:
1.激發主動性
學生應激發自己對物理現象觀察和學習物理知識的興趣,主動性和自覺性,助力物理意識。
2.明確觀察目的
要明確具體的觀察目的,觀察中心,觀察條件和范圍。
3.準確記錄
觀察時,要準確記錄物理現象的發生、發展和終結全結論,寫出觀察報告。
二、物理實驗法物理學是一門以實驗為基礎的科學。物理實驗不僅要了解它提供的實驗結果,更重要的是掌握實驗的構思方法和研究物理問題的思路。物理實驗可分為;觀察實驗、驗證實驗、探索性實驗、模擬實驗和思想實驗等。實驗學習應該注意:
1 .樹立嚴謹的科學態度
要一絲不茍地進行實驗,實事求是地記錄,不放過任何一個現象變化和細節。
2.構思方法技巧
實驗構思的主要方法有:(1)放大與擴展;(2)間接觀察后再作推論;(3)模擬類比(4)思想實驗(理想實驗) 如:伽俐略的斜面實驗中,在水平面上依次鋪上毛巾、棉布、木板、玻璃板,測量其小車滑行的距離,再得出結論:平而越光滑,小車運動的距離越遠;根據實驗事實推理;若平面完全光滑,小車將運動到無窮遠,即一直運動下去不會停下來,由此總結出“慣性定律”。
3.實驗要求
進行物理實驗時,要了解物理實驗的目的,會正常使用儀器,會作必要的記錄,會根據實驗結果得出結論,會寫簡單的實驗報告和進行簡單的誤差分析。
三、物理概念學習法一個物理概念,它是某類型物理現象的概括;是物理知識的核心內容之一。學習物理概念應該注意:
1.歸納概括
就是將物理進行分類比較,將同一類型的物理現象的共性找出來,概括并能說明這一類型的物理現象的本質特征。例如;“質量”概念,各個物體的物質組成不同,但“物體所含物質的多少”就是物體的共性,即質量,與物體的形狀,所處的狀態,地理位置和溫度無關。
2.實例聯系
抽象概念的理解是困難的,如果把“概念”放在實例中去記憶,去理解,就要簡單得多,也就要容易區分相關因素和無關因素,找出共同特征。如“蒸發”概念,對應水在任何溫度下都能蒸發,且需吸熱,就能夠很快地對“蒸發”概念理解透徹。
3.內涵與外延
不能將物理概念任意外推,如果這樣就會導致概念與事實不相容的矛盾。例如:“慣性”這個概念,它說明一切物體都具有的保持其原來的運動狀態性質,物質運動靜止,不是因為物體是否受力,而是物體具有“慣性”。受力與否,是決定物體運動狀態變化與否的必要條件。兩千多年前,古希臘科學家亞里斯多德認為:“力是維持物體運動的原因”,他之所以錯誤,就是沒有概括出物體運動的本質特征。
四、物理定律學習法物理概念和物理規律是物理知識的核心內容,是物理課中的基礎知識,物理定律是通過歸納大量事實和實驗中認識的客觀規律后形成的科學結論。如牛頓第一定律、歐姆定律、焦耳定律、阿基米德原理等。學習物理定律應該注意:
1.準確理解物理定律的物理意義
知道物理定律的內容,理解其實質,能用準確的語言表述,能聯想一個實例。
2.明確物理定律的適用條件
物理定律是客觀規律的總結,但它并不一定在任何條件下都成立。因此,不能忽視物理定律所適用的范圍和條件。如:熱平衡方程“Q吸=Q放”的成立條件是:系統與外界無熱交換。若系統與外界有熱交換,則只能在不計一切熱損失的條件下才能成立。
3.弄清各物理量間的相互聯系
弄清各物理量間的相互聯系,透徹理解各概念;知道定律的建立(或帳號)過程,重視各部分知識間的聯系,把前后概念連貫起來,從而使知識系統化、條理化。
4.建立物理定律所對應的模型
對每一個物理定律,都應記住它所對應的模型或典型范例。要了解它的研究對象,研究對象的運動狀態等。如:“反射定律”的典型范例是平面鏡成像。
5.記住物理定律所對應的典型實驗
物理定律的基礎是物理實驗,應將物理定律與相應的典型實驗對應起來,有利于對物理定律的理解和深化。如:“阿基米德原理”所對應的典型實驗就是“排液法”測浮力,“歐姆定律”所對應的典型實例就是研究“電壓與電流強度的關系”實驗。
五、物理公式學習法物理公式(含物理定律的數學表達式)是物理學成熟的重要標志.從定性到定量的研究,使物理現象從經驗升華到科學。物理公式一般可分為三大類:
1.定義式
它是對一類問題的概括性表達式。表示某一物理概念的意義。使用這類公式,不能簡單地從數學角度看,而應透過數學表達式這個現象,去領會它的物理實質。如密度p=m/V,絕不能認為密度與質量M成正比,與體積V成反比,密度是物質自身的特性,由物質的種類決定,與物體的質量和體積無關。同理,電阻的定義R=U/I也是如此,電阻R由組成電阻的材料、長度、橫截面積來決定。
2.物理定律、規律、原理表達式
它揭示了這一類物理現象在運動變化過程中所遵循的法則,使用時,要特別注意這類表達式的運用范圍和條件。例如:液體壓強公式P=≥gh,它表達了液體在內部各處產生的壓強所遵循的規律,它的適用范圍是:靜止液體,應特別注意的是,h是從液體上表面往卜測量的深度,而不是通常意義上所說的高度。
3.計算式
一、教學語言力求準確嚴謹,體現科學性
教學語言有著嚴格的標準和要求,唯有達到相關要求,才能發揮其教學功能,完成教學任務.因此,用好語言是教師的基本功之一.教師要善于探求教學語言的內在規律,掌握表達規則,使自己的表達更容易為學生所接受.初中物理教學語言的第一要素是準確嚴謹.這就要求教師在使用語言時要符合語音、語法體系,使自己的措辭能正確表達相應信息.特別是物理概念和規律的表述.這些內容都是經過幾代人的精心打磨,經歷了如大浪淘沙般的提煉過程,多一字或少一字都會導致意義的偏離或缺失.教師要注意鍛造自己的語言,凸顯表達的準確與嚴謹;教師要用標準的普通話組織教學,遵從漢語表達的基本規則,注意語義的簡明易懂.
比如,在物理教學中,“規律”、“定律”等詞就不能混用,“光的折射規律”一般不說成“光的折射定律”;“歐姆定律”也不能說成“歐姆規律”.這是因為“規律”往往是自然界原始現象的一種總結與歸納,是事物間或事物內部固有的、原生態的聯系;“定律”則對應一定的條件,發生在一定的過程中,“定律”可以認為是“規律”的一個分支,它的形成應該經過模型化的處理和分析,它的成立將對應一定的條件和前提.所以,教師在某些內容表述上也要做到咬文嚼字.此外,以“歐姆定律”為例,它反映的是電流與電壓、電阻的關系,因此在內容闡述上應該突出“電流與導體兩端電壓成正比,與導體電阻成反比”.這句話能清晰地體現出誰是自變量,誰是因變量,反過來講就會發生錯誤.