時間:2022-07-25 13:20:09
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇高電壓技術論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
1.1高壓直流電網的技術發展
歐洲專家介紹了近海岸直流電網示范工程的研究結論,這項研究工作包括近海岸間歇性能源,直流電網經濟,控制保護等問題。兩個著名硬件設備開發商參與了該項目,完成用于測試控制技術開發的低功率模擬器,并證明保護算法可用于直流電網,開發出了基于電力電子和機械技術創新的直流斷路器;另有專家提出了利用有限的直流斷路器操作,設計具有故障清除能力直流網絡,模擬研究表明使用直流斷路器可迅速隔離直流側電網故障,即可在點對點的電纜方案中使換流器繼續支撐交流網絡。針對此問題,中國專家發言指出可采用全橋型子模塊拓撲結構來清除直流側故障,實現與電網換相換流器(LCC)相同的功能。德國專家提出了關于采用電壓源換流器(VSC)的交直流混合架空線運行的特殊要求,雖然混合運行可提高現有輸電通道的容量,但存在一系列挑戰,包括利用可控、有效的方式實現多終端的操作管理,交直流系統的耦合效應,直流電壓和電流匹配原則以及機械特性差異等。韓國專家提出了用于晶閘管換流閥的新型合成運行試驗回路,該回路可向測試對象施加試驗用交、直流電壓和電流脈沖,并配置了可在試驗前給電容充電的可控硅開關,以及為試驗回路中晶閘管門極提供觸發能量的獨立高頻電源。
1.2可再生能源的并網
美國專家提出了近海岸高壓直流輸電系統設計方案的可靠性分析方法,研究了平均失效時間和平均修復時間等可靠性指標,并結合概率(蒙特卡洛)技術來評估風速波動對風電場的影響,且評估不同的系統互聯、系統冗余以及使用直流斷路器與否等技術方案的能量削減水平,提議將能量削減作為量化直流電網可靠性的指標。為設計人員選擇不同的技術方案、拓撲結構和保護方案提供依據。近海岸直流輸電換流站選址缺乏相關的標準、項目參考及工程經驗,難以給項目相關者提供合理的建議,并且可能會在項目的開發過程中引入風險。挪威專家針對此情況提出了一種從石油和天然氣行業經驗總結得出的技術資格要求,將有助于更加快速、高效、可靠地部署海上高壓直流輸電系統。
1.3工程項目規劃、環境和監管
哥倫比亞和意大利專家提出了哥倫比亞與巴拿馬電氣互聯優化設計方案,初步設計方案額定容量為600MW/±450kV,經過綜合比較,方案優化為300MW/±250kV,400MW/±300kV的雙極結構,并使用金屬回線作為最佳的技術和經濟解決方案。線路長度由原來的600km變為480km,但考慮到哥倫比亞輸電系統的強度問題,決定保留原來的輸電路線。貝盧蒙蒂第一條800kV特高壓直流輸電線路項目規劃構想了額定參數為2×4GW/±800kV雙極結構,直流線路長2092km,連接巴西北部與南部的直流輸電工程方案;印尼第一條Java-Sumatra直流輸電工程,額定參數為3GW/±500kV,雙極結構,直流線路包含架空線和海底電纜,考慮采用每極雙十二脈動換流器和備用海底電纜來提高系統的可靠性和可用率;太平洋直流聯接紐帶介紹了延長太平洋北部換流站壽命的最佳方案,將原有的換流器變為傳統的雙極雙換流器結構,但保留多余的2個換流器閥廳,現以3.8GW/±560kV為額定參數運行。
1.4工程項目實施和運行經驗
新西蘭和德國專家提出“新西蘭直流工程新增極3的挑戰和解決方案”,該工程不僅要保證設備能承受較高的地震烈度,保障其在弱交流系統中安全穩定運行,還要設計合理的設備安裝地點,以及新建極與原有極的一體化控制保護系統;巴西互聯電力系統的Madeira河項目中SanAntonio發電廠對400MW的背靠背中第一個模塊及額定參數為3.15GW/±600kV雙極中的第一極進行充電,工程因交流系統沒有足夠的短路容量而延遲工期,后通過安裝500kV/230kV聯接變壓器得以解決。印度的Champa-Kurukshetra±800kV/3GW高壓直流工程首次在特高壓輸電工程中采用金屬回線返回方式運行,輸電線路長1035km,遠期增加容量3GW,雙極功率傳輸容量可達6GW;法國與西班牙東部互聯案例中采用雙回VSC-HVDC饋入交流網絡,研究認為VSC-HVDC是首選的技術解決方案。
2FACTS裝置及技術應用
2.1可再生能源并網
丹麥專家開發了多電平靜止同步補償器(STATCOM)通用電磁暫態模型,并基于倫敦Array風力發電廠多電平STATCOM現場測量和電磁暫態仿真結果對比研究進行了驗證,仿真結果與現場測量結果比較相符,并顯示出良好的相關性。
2.2提高交流系統的性能
加拿大專家提出了用于工程規劃的通用VSC模型,開發了基于PSS/E的穩態和動態模型。驗證了該模型部分交流側和直流側故障,結果表明具有良好的相關性,可在新的工程規劃和規范研究中應用。伊朗專家提出了分布式發電并網中基于自適應脈沖VSC的新型控制方法,與另外兩種控制方法相比,諧波補償和電能質量改善比較表明,分布式發電中諧波含量減少,從而減少諧波注入交流網絡。“智能電力線路(smartpowerline,SPL)實驗研究項目”引入了在架空輸電線路嵌入微型變電站的概念。電源交換模塊,保護模塊和在線監測系統可使輸電線路變得更智能,該技術還可以用于管理功率潮流和額外參數測量。
2.3FACTS工程項目規劃、環境和監管
印度專家進行了動態補償裝置在印度電力系統的配置及選址研究,以易受故障擾動影響的印度西部地區為重點研究區域,并提出了無功功率控制補償器的最佳位置和動態范圍。
3電力電子設備的技術發展
3.1直流斷路器、直流潮流控制器和故障電流限制裝置
Alstom進行了120kV直流斷路器的開發和測試研究,該斷路器包括電力電子元器件,超快速機械斷路器,串聯電容器和避雷器等重要組成部分,可在5.3ms內開斷電流。ABB提出混合型直流輸電工程斷路器為未來高壓直流系統的解決方案,描述了混合直流斷路器的詳細功能、控制方式和設計原則,混合斷路器的核心部件同樣為超快速機械斷路器。ABB的專家還提出了低損耗機械直流斷路器在高壓直流電網中的應用,其可替代混合直流斷路器,開斷參數最大為10kA/5ms。斷路器包含電磁制動器、并聯諧振電路,已完成一個額定參數為80kV的斷路器樣機,并成功通過了開斷目標電流的試驗。
3.2新型半導體設備和換流器拓撲
(1)利用高壓噴射法進行施工時
其主要是利用鉆機來進行鉆孔,當鉆機達到要求的深度時,則利用高壓泥漿泵的高壓射流來對周圍的土體結構進行破壞,同時再不斷的將鉆桿進行旋轉提升,并在此過程中利用特殊噴嘴來向周圍土體中高壓噴射固化漿液,使其漿液與土體達到有效的固化,從而形成一定性能和正式成立的固結體,增加土體的強度和穩定性。
(2)固結體形成什么樣的形狀
這是與噴射流的移動方向有緊密聯系的,因為在噴射過程中,通常會采用旋轉、定向和擺動三種噴射方式,這樣就會導致在旋噴情況下形成旋噴柱,這對于提高地基的抗剪強度,加固地基都具有良好的作用,而且可以對于地基土變形的情況有較好的改善作用,特別是當上部具有較大荷載時,具有良好的承載作用,不至于變形或是受到破壞。而利用定噴時固結體則會呈現壁狀,而擺噴則會形成厚度較大的扇狀,這對于地基的防滲作用都具有非常好的效果,可以有效的確保邊坡的穩定性,進一步改善地基土的水力條件。
2高壓噴射灌漿工藝
2.1原材料
在灌漿施工時,需要確保漿體達到良好的可泵性和保水性,所以通常都會在施工前對漿體進行必要的處理和養護,使其保持立方體的模型持續七天,然后還要對其進行抗壓力度檢查,確保其符合灌漿時對漿體的要求。同時在施工過程中,為了有效的避免漿體出現干縮的現象發生,則需要將矢量的膨化劑加入到漿液中,有效的改善漿體干縮情況的發生。
2.2定位技術
對噴灌位置的確定時需要利用定位技術進行,同時還要嚴格遵照施工圖紙,對施工中各種參數進行充分的考慮,利用定位技術找準防滲墻的位置,還要錯開固有的鋼筋位置,并做好標記,等一切工作準備就緒后,檢查后與符合標準要求,即可以進行鉆孔作業。
2.3鉆孔技術
在灌漿施工中,對鉆孔有一定的限制。首先,不管是直孔,還是孔壁,都應該有較高的筆直性和足夠的均勻度;其次,在施工中,需要有一個合理的程序,這就要求必須嚴格按照規范進行操作。例如灌漿流程要從前到后依次開展,需注意后一鉆孔作為前一鉆孔的檢查孔,應借助壓水實驗來檢查鉆孔的吸水量,如果吸水量符合規定,后續孔的灌漿工作便可省去。此外,在灌漿施工開始前,需要做一些清理工作,將鉆孔或裂隙中的巖粉徹底沖洗掉,以維持其干凈性。常用沖擊鉆進行鉆孔,按規定標準,鉆頭和鋼筋的直徑差應控制在5mm左右。
2.4插管
鉆完孔后,按照設計好的深度將注漿管及時插入地層,此環節通常和鉆孔是連在一起的,即每鉆完一個孔,就須將噴射管插入,輸送壓縮空氣,接著將漿泵打開,持續30s送漿,然后將鉆桿拔出。插管時為避免噴射管的噴嘴被泥沙堵塞,可將插管和射水工作同時進行,如果壓力過大,可能會出現射塌孔壁的情況,因此,水的壓力盡量保持在1MPa以內。
2.5噴漿
噴漿要遵循自下而上的順序,且需要結合土質、地下水等因素綜合考慮,對噴漿的流量、壓力及提升速度進行適當調整。有時需進行二次噴射,即在上次噴射形成的漿土混合物上進行噴射,噴射流遇到的阻力比上次噴射要小,二次噴射有利于增加固體的直徑。噴漿完成后,對套筒、拉桿等進行清洗,以便下次使用。
2.6檢查
灌漿工作結束后,要做的就是檢查工作,必須對施工質量做一個嚴格且全面的檢查,而且大概要維持一個月左右。比如說檢驗灌漿區的鉆孔,就要做好壓水實驗,通過對巖心膠的觀察來確定其施工質量是否符合規定要求。
3水利工程高壓噴射灌漿施工中質量控制
3.1位置
首先必須按照指定的設計要求來布設防滲墻。那么,墻的厚度要和設計的要求一樣,子距一般為2.0m、有效半徑和擺角分別是1.8m和15°,另外,升速度一般為10cm/min。噴嘴型號為2mm,氣嘴7mm,水壓為29.4~34.3MPa,空氣壓735kPa。
3.2測壓管的四周必須要用黃沙來做漏層
規定管口為2英寸的PVC管,管底1.1m高為透水部分,外用400g/m2土工布包裹。
3.3在水泥的使用材料上必須要經過嚴格的質量控制
需要專業的人員進行現場取樣后特意地送往檢測部門在進行檢驗復試,那么,需要往水泥材料里添加外用劑的時候,也必須經過試驗后才能明確要摻進的量度。
3.4鉆孔在經過嚴格的檢驗之后才能進行孔內和縫面沖洗
將孔口敞開用風和水一次進行清洗,將風(水)管插入孔底,風(水)反復沖洗,直至回清水后即可結束。
3.5灌漿
由于裂縫兩邊的混凝土在灌漿壓力的作用之下會產生有害的變形,在進行灌漿施工時應布置好一起對裂縫進行監測,另外,在施工灌漿技術時的工序應保持先淺到深、一側向另外一側、右下至上來進行,另外,在灌漿施工結束的標準是單孔吸漿率趨于零之后,灌注20~30min,想要防止因為竄孔而破壞噴射注漿的固結體,就必須要分序進行噴射施工工藝。
4結束語
關鍵詞:電力系統;高壓電氣;試驗;絕緣
前言
高壓電氣試驗是考核電氣設備主絕緣或電氣參數是否滿足安全運行的一個重要手段。然而,高壓電氣試驗的結果往往會受到一些不為人們所注意的因素所干擾,造成試驗結果與實際情況不符合,甚至得出錯誤的結論。比如,被試設備的缺陷沒有被反映出來,造成設備帶病運行;也可能把合格的設備判斷為不合格,從而造成不必要的損失。筆者對多年來在高壓試驗中所碰到的一些問題,進行歸納、分類和分析,并對如何避免和解決這些問題,提出了相應的措施。
1、試驗設備和被試設備的接地問題
1.1高壓TV及TA二次回路不接地造成測量數據錯誤
在測量高電壓和大電流時,必須使用TV和TA進行變換。理論上,TV或TA的變比應遵循電磁感應定律,即它們是變比決定于一次繞組的匝數和二次繞組的匝數。然而,在實際應用中,如果高電壓下的TV或TA的二次繞組沒有將一端接地時,實際上反映出來的變比就會偏離銘牌值,所測量出的數據也是錯誤的。例如,對1臺30mW水輪發電機進行交流耐壓試驗時,采用1臺35KV/100V的TV和1塊150V的交流電壓表測量電壓,在第1次試驗時發現電容電流比往年小得多,顯然是試驗電壓沒有達到預定值,所測量的電壓是一個虛假的數據。經檢查發現TV二次沒有接地。將TV二次繞組一端接地后,數據恢復正常。試驗數據見表1。
表1TV二次繞組不接地和接地的數據比較
如果按照電流與電壓成正比的關系反過來計算第1次試驗電壓,應為:(21/38)×23.8=13.15(kV),這一電壓與預定試驗電壓相差甚遠。對于高壓TA,我們在實驗室也做過同樣的試驗,當高壓TA二次繞組不接地時,電流的變比同樣會產生嚴重的偏差。
無獨有偶,在做1臺電力變壓器的空載試驗時(試驗電壓10kV),第1次試驗所測量的空載電流和空載損耗與出廠試驗數據不吻合,經檢查也是TV和TA二次繞組沒有接地所造成。
由于高壓TV,TA的一次繞組和二次繞組與大地之間存在著分布電容,如果二次繞組不接地,二次繞組上的感應電壓就會通過表計與大地之間產生雜散電流,從而產生錯誤的指示值。
通過對這一問題的分析,筆者認為以下兩件事情在高壓試驗中必須重視:
1)高壓TV和TA的二次繞組,不論是從安全的角度還是從測量的準確度來考慮,都必須將其中的一個端子可靠接地;
2)在進行交流耐壓試驗時,應同時測量試品的電容電流,因為可以從電流的大小來判斷試驗電壓是否正常。
1.2被試設備接地不良造成介質損耗增加
這種問題主要發生在電容量較大的設備上,比如耦合電容器或CVT(電容式電壓互感器)。在變電站里,線路CVT或耦合電容器通常都與線路直接連接,在檢修時為了保證線路檢修人員的安全必須將CVT或耦合電容器的頂端接地,通常是將線路的接地開關合上或掛上臨時接地線。如果接地開關或臨時掛接的地線接觸不良,相當于在電容器上串聯了一個附加的電阻。如果電容量為c,電容器的介質損耗因tgδ與等值串聯電阻R有如下關系:
tgδ=Ωcr
從上式可知,當電容器串聯的電阻一定時,電容器的電容量越大所產生的損耗越大。在實際試驗中,已經多次發生因接地開關或接地線接觸不良而造成被試品介質損耗超標的問題。表2是一個500KV直流中繼站耦合電容器的測量實例。
表2 耦合電容器介質損耗測量數據比較
當懷疑接地開關或接地線接觸不良時,可以在被試品上直接掛上另外的接地線,保證接觸良好。
1.3濾波器接地開關沒合上造成測量數據異常
這種情況發生在測量耦合電容器(或帶通信端子的CVT)上,如圖1所示。由于耦合電容器頂部接地,所以在測量C1的介質損耗時通常采用反接屏蔽法,也就是將測量裝置的屏蔽端子接于C2的下端,這種接法似乎是把C2以下的元件全部屏蔽掉了,而事實上并非如此。表3是一個測量實例,從表3數據來看,當接地開關打開時,不同的測量儀器所呈現的異常情況不盡相同,只有當接地開關合上后,才能測出正確的數據。這種情況說明異常現象還與儀器的測量原理有密切的關系。
因此,在測量耦合電容器的介質損耗時,應首先將結合濾波器的接地開關合上。
圖1反接屏蔽法測量C1
表3濾波器接地開關的分合狀態對測量結果的影響比較
2、試驗電壓不同所引起的問題
2.1對介質損耗因數測量的影響
在一次500KV直流中繼站的耦合電容器預防性試驗中,由于耦合電容器電容量較大,為了避免儀器過載,采取降低試驗電壓的方法進行測量。在36臺耦合電容器中其中有1臺測量結果不合格,見表4序號1。為了查找試驗不合格的原因,試驗人員采取了各種各樣的方法,如改變試驗接線、擦拭外套等等,但測量結果仍不合格。第二天用另一型號的測量儀進行測量時,發現在0.5KV的電壓下測量結果仍然不合格,但隨著試驗電壓的提高,介質損耗卻越來越小。然后再用回原來的儀器復測,在同樣的試驗電壓下測量結果也已經正常,測量結果見表4中序號2-7。這種現象顯然與絕緣材料中存在雜質有關。之所以出現這種現象,我們分析原因可能是:多元件串聯的耦合電容器中存在連接線氧化接觸不良的問題,在低電壓下氧化層未擊穿,呈現較大的接觸電阻,所以介損變大;當試驗電壓提高后,氧化膜擊穿,接觸電阻下降,介損變小,這時即使降低試驗電壓,氧化膜仍保持導通狀態,介質損耗不再增大。
2.2對測量直流電阻的影響
某廠1臺發電機在進行預防性試驗時,用雙臂電橋測量轉子繞組的直流電阻,測量結果與歷年數據相比顯著增加。為了慎重起見改用外加直流電壓電流法,測量結果卻與歷年試驗數據接近,然后改用不同的儀器測量,數據變化很大。根據對測量方法和結果的分析,我們判定轉子繞組已經存在導線斷裂的問題。導體斷裂后,在斷裂面形成一層導電性較差的氧化膜,當用雙臂電橋測量時,由于電橋輸出電壓較低,氧化膜不擊穿,所以呈現較大的電阻;而采用外加電壓電流法時,由于輸出電壓較高,所以氧化膜擊穿導電,測量的直流電阻就變小。經拔護環檢查,該轉子繞組端部存在5處斷裂的缺陷。
表4不同電壓下耦合電容器測量結果比較
以上例子說明,對于與直流電阻有關的試驗,采用輸出電壓低的儀器更容易暴露設備存在的缺陷。
2.3對測量直流泄漏電流的影響
導體表面所產生的電暈電流在導體的形狀、電壓極性、導體間的距離確定以后,就與電場強度的大小有關。當外施電壓小于一定的數值時,電暈電流很小,對泄漏電流的測量影響可以忽略,而當試驗電壓超過一定的數值后,電暈電流要比絕緣的電導電流大得多,這時就要采取措施減小電暈電流的影響。
3、環境溫度所引起的問題
在某廠1臺發電機轉子的預防性試驗中測得轉子繞組的直流電阻不合格,正準備進行處理,為慎重起見,先用原儀器進行復測,卻發現數據是合格的。在后來的幾天里,這種情況總是反復出現,所測得的數據有時合格,有時又不合格,令人費解。后來經詳細分析,發現凡是白天測量的數據都是合格的,而晚上測量的數據都是不合格的。進一步分析發現,該電廠所處的地區白天和晚上的溫差較大,極有可能是轉子繞組導體存在裂紋,白天溫度高時,由于導體膨脹,裂紋被頂緊而完全導通,所以直流電阻合格;而到了晚上,由于溫度降低,導線收縮,裂縫被扯開,所以直流電阻增大而不合格。經拔護環檢查,證明這一分析是正確的。
4、引線所引起的問題
4.1絕緣帶的問題
在一次測量500kV斷路器斷口電容器的介質損耗因數時,所測得的數據總是不合格,為了找出原因,試驗人員嘗試了各種各樣的方法,最后發現只有當取消固定試驗引線的塑料帶后,所測得的數據才是合格的。經用兆歐表測量,所用的塑料帶絕緣電阻竟然只有幾百兆歐,而被試設備的絕緣電阻均大于10000MΩ,用這樣的塑料帶固定試驗引線,無疑是在試品上并聯了一個電阻,增加了試品的介質損耗。這種現象確實非常罕見,為了保證試驗結果的準確性,檢查所使用的絕緣塑料帶的絕緣電阻還是很有必要的。
4.2避雷器的引線問題
某廠1臺500kV主變中性點避雷器在預防性試驗中,檢修人員僅將引線的主變側斷開,引線保留在避雷器上,用塑料絕緣帶固定并與周圍設備保持足夠的距離。然而,在試驗中75%直流參考電壓下的泄漏電流總是在70μA~80μA之間,大于50μA,按規程規定屬于不合格。廠里只好打算更換。為了慎重起見,在拆下避雷器的引線后進行復測,泄漏電流已小于20μA。由此可見,在進行避雷器試驗時,高壓部位的引線必須全部拆除,而且高壓直流發生器的屏蔽線必須直接接到避雷器的高壓端,以防止引線所產生的電暈電流流入微安表造成測量偏差。
5、結束語
論文摘要:發電側AVC子站通過遠動專線接收內蒙省調AVC主站下發的電廠側220KV母線指令。中控單元在充分考慮各種約束條件后,計算出對應的控制脈沖寬度,以通訊方式下發至AVC執行終端,由執行終端輸出增減磁信號給勵磁系統(或輸出至DCS),調節機組無功功率,發電機無功出力與機端電壓受其勵磁電流的影響,當勵磁電流發生改變時,發電機的無功出力與機端電壓也隨之增減,并通過機端變壓器進一步影響到母線電壓的高低,勵磁電流的增減可通過改變勵磁調節器(AVR)給定值實現。
一、
選題背景及其意義
近年來,隨著我國電力工業的迅速發展,電網規模的不斷擴大,電力系統的安全、經濟運行已成為電力生產的重大課題。必須不斷采用新技術在保證電力系統安全運行的前提下,提高電能質量、降低網絡元件中的電能損耗,從而獲得滿足安全運行條件下的最大經濟性和最好的電能質量。其中電網的自動電壓控制及無功優化(簡稱AVC)就是電力生產中提高電能質量,降低網損的重要手段。國家電力調度中心已經把這一項目列入了“十一五規劃”。
自動電壓無功調控系統AVC系統將發電廠母線電壓的調整由人工監控改為自動調控,具有以下意義:
1.提高穩定水平:網內電廠全部投入裝置后,通過合理分配無功,可將系統電壓和無功儲備保持在較高的水平,從而大大提高電網安全穩定水平和機組運行穩定水平。
2.改善電壓質量:電壓監督電壓合格率得到大幅度提高。
3.消除了人為因素引起誤調節的情況,有效降低了運行人員的工作強度。
二、國內無功電壓控制現狀
國內目前對發電廠無功電壓的管理考核方式,主要是由調度中心按照高峰、平谷和低谷等不同時段劃分母線電壓控制范圍,按季度向各發電廠下達曲線指標,發電廠則根據曲線要求,實行人工24小時連續監視盤表,及時調節發電機無功出力,以維持母線電壓在合格范圍內。這種沿用了多年的就地分散控制管理模式,在當前電網結構日益復雜的形勢下逐漸暴露出了一些弊端,存在的主要問題是:
1.事先給定的電壓曲線和無功設備運行計劃是離線確定的,并不能反映電網的實際情況,按照這種方式進行調節往往帶來安全隱患。
2.電網運行人員需要時刻監視系統電壓無功情況,并進行人工調整,工作強度大,而且往往會造成電網電壓波動大;
3.電廠之間,無功調節對相互母線電壓影響大,無功調節矛盾突出。由于各電廠只關注自身母線電壓,沒有從全局角度協調無功分配,電網無功功率無謂搬運現象突出,經常出現無功環流現象,造成不必要的有功損耗。各廠、站無功電壓控制沒有進行協調,造成電網運行不經濟。
上述問題的存在,既增加機組進相深度,影響機組和電網安全穩定運行,也使網損增加,影響經濟性。因此,有必要發展AVC(自動電壓控制)系統,從全局對電網無功潮流和發電機組無功功率進行協調控制,實現電廠母線電壓和無功功率的自動調控,合理協調電網無功分布,以保證電網安全穩定運行,提高電壓質量和減少網損,降低運行人員勞動強度。近幾年來國際上幾次重大的電網事故如美加大停電,都有無功電壓的問題造成電壓崩潰,致使電網癱瘓。無功電壓自動控制技術越來越引起重視,在華北電網,基于分層分區控制技術的二/三次電壓控制技術在某些電廠逐步進入應用,而本論文依據包頭第二熱電廠現場改造的實際情況,將重點講述電廠側無功電壓控制方案在包頭第二熱電廠的應用。
三、課題研究的主要內容:
發電廠側AVC實施方案
信息來源:http:/1. 自動電壓無功調控系統控制方案
在發電側增設一套電壓無功自動調控系統,與調度中心共同組成AVC系統,以主站-子站星型網絡方式運行,主站和子站系統之間通過現有數據采集系統及數據通信網互連并完成信息交換。 發電側AVC子站通過遠動專線接收內蒙省調AVC主站下發的電廠側220KV母線指令。中控單元在充分考慮各種約束條件后,計算出對應的控制脈沖寬度,以通訊方式下發至AVC執行終端,由執行終端輸出增減磁信號給勵磁系統(或輸出至DCS),調節機組無功功率,發電機無功出力與機端電壓受其勵磁電流的影響,當勵磁電流發生改變時,發電機的無功出力與機端電壓也隨之增減,并通過機端變壓器進一步影響到母線電壓的高低,勵磁電流的增減可通過改變勵磁調節器(AVR)給定值實現。所以系統的無功電壓控制通過勵磁系統來實現。自動電壓調控系統AVC是通過改變發電機AVR的給定值來改變機端電壓和發電機輸出無功的。信息來自:輸配電設備網
包頭第二熱電廠300MW機組自動電壓控制(AVC)系統框圖
2.合理的設備配置方案
2.1.安全可靠的硬件配置
本工程采用中控單元/執行終端配置方式,共安裝兩套獨立的系統,每套設備配置臺中控單元(主/備)和2臺AVC執行終端,終端與機組一對一配置。AVC子站中控單元接收內蒙省調AVC主站下達的電廠側高壓母線電壓指令,在充分考慮各種約束條件后,計算出對應的控制脈沖寬度,下發至AVC執行終端,執行終端輸出增減磁信號給勵磁系統,由勵磁系統調節機組無功功率。
中控單元有主備功能,主中控單元故障時,可切換至備用中控單元,保證系統正常運行。主中控單元恢復后,自動切回主中控單元控制。
本工程共有中控單元2臺,執行終端2臺。
2.2.人性化的發電廠AVC子站軟件配置方案
2.2.1.包括完整的數據采集、處理、通信和診斷等各種軟件,應具有告警、具體故障內容的中文提示及事故記錄功能。軟件配置滿足功能規范的要求,具有良好的實時性和可維護性。
2.2.2軟件遵循國際標準,滿足開放的要求。
2.1.3.便于用戶的二次開發和在線安裝、生成、修改新的應用功能。
2.1.4.配備一套完整的、可運行的軟件備份。
2.2.5.系統有較強的防計算機病毒、反入侵能力,提供硬件防火墻或其它安全設施的接入能力。
2.2.6.具備較強的數據存儲功能,能夠長時間存儲運行數據、運行事件、系統參數和離線電壓設定曲線等數據。
3.對功能模塊的要求
3.1計算模塊應具有下列功能:
ü
根據高壓母線電壓調整量目標值計算電廠對應機組發出無功功率目標值。
ü
按照給定的無功分配策略,將總的無功目標值分配給各臺機組。
ü
選擇需要調整的機組,給出合適的調整指令。
ü
自動識別母線檢修,雙母線結構一條母線檢修,控制母線自動切換至另一條母線。
3.2.運行約束條件:
ü
AVC主站下發的調節信號突變限值;
ü
AVC主站控制無效時間限值;
ü
發電機參與調節的有功功率限值。
ü
發電機在不同的有功出力下對應的無功功率上下限;
ü
發電機的機端電壓上下限;
ü
發電機的機端電流上下限;
ü
高壓側母線電壓上下限;
ü
AVR自動信號消失;
ü
實時數據波動過于劇烈,超過設定值;
ü
實時數據不刷新;
ü
省調通信中斷;
ü
RTU通信故障;
ü
機組有功越閉鎖值;
ü
機組無功越閉鎖值;
ü
機組機端電壓越閉鎖值;
ü
機組機端電流越閉鎖值;
ü
母線電壓越閉鎖值。
ü
機端電流耦合校驗
AVC子站在滿足以上運行約束條件時,裝置閉鎖輸出并發出增減閉鎖信號,一旦運行條件正常,增減閉鎖信號消失,裝置自動恢復正常運行。
3.3AVC子站的控制模式
ü
退出:只能工作在研究方式下。
ü
閉環:AVC主站與子站閉環運行。
ü
開環:AVC子站系統根據本地設定電壓運行
3.4防誤措施
ü
中控單元計算錯誤時有保護措施,能可靠保證不誤輸出。
ü
執行終端掉電時不會誤輸出。
ü
任一硬件模塊或連線損壞,均不會造成設備誤輸出。
ü
防止輸出控制節點粘死措施,當輸出節點粘死導致輸出控制脈沖過長時,應自動切斷控制輸出信號保證機組安全。
4.GPS對時接口
子站系統提供RS485串口(RS232口備用),可與廠內衛星定時系統GPS實現精確對時(對時誤差不大于1ms)。
5.自動電壓無功調控系統調試中注意問題。
自動電壓調控系統的各種限制功能必須與發電機勵磁系統AVR的各種限制以及和發變組保護很好的配合。根據發電機勵磁系各種限制數據以及發電機P-Q曲線、發變組保護定值對自動電壓調控系統定值進合理整定,杜絕配合不好帶來的不良后果。
試驗時,調度及電廠運行加強監視控制點參數,必要時,無條件退出AVC運行,并恢復參數。 調試中注意和發電廠側進相數據的配合,調整中要保證6KV廠用電系統的穩定運行,如果調整中6KV電壓過低,有必要調整發電機電壓定值。
在無功調控設備中采取措施防止增磁和減磁出口繼電器接點粘連。
四、
研究的難點和重點
(1)
本文著重闡述該系統如何通過合理的硬件配置實現安全可靠運行、如何實現人性化、可視化、智能化的軟件系統配置。
(2)
在參數設定中,既要保證電網電壓及無功優化問題、又要考慮到本廠汽輪發電機組在調節過程中的安全穩定問題,因此AVR執行終端的無功功率調節死區、脈沖計算斜率、最大脈沖寬度的定值是AVR成功運行的關鍵因素,也是本文的重點和難點。
(3)自動電壓調控系統的各種限制功能必須與發電機勵磁系統AVR的各種限制以及和發變組保護很好的配合。根據發電機勵磁系各種限制數據以及發電機P-Q曲線、發變組保護定值對自動電壓調控系統定值進合理整定,杜絕配合不好帶來的不良后果。
五、預期成果
本課題研究成功投入使用后,將發電廠母線電壓的調整由人工監控改為自動調控,消除了人為因素引起誤調節的情況,有效降低了運行人員的工作強度,保證系統電壓低于規定的最大數值,以適應電力設備的絕緣水平和避免變壓器過飽和,并向用戶提供合理的最高水平電壓; 信息來自:tede.cn 大機組無功出力分配必須滿足系統穩定的要求,單機無功必須滿足P-Q曲線,保證了機組安全運行,盡可能地降低了電網的有功功率損耗,取得較好的經濟效益。
參考文獻
1. 唐茂林.龐曉艷.李曼.劉柏私.尹曉瀾.張蓓.李建.郭慶來.孫宏斌 計及梯級電站的省地一體化AVC系統研究及實現方案 [期刊論文] -電力自動化設備2009(6)
2. 惠建峰.焦莉.張世學 自動電壓控制系統建設與應用分析 [期刊論文] -陜西電力2009(2)
3. 李欽.溫柏堅 廣東電網電廠AVC子站建設研究 [期刊論文] -電力系統保護與控制2008(21)
4. 郭慶來.孫宏斌.張伯明.吳文傳.王彬.李柱華.湯磊.王蓓.寧文元.鄭燕濤.袁平 自動電壓控制中連續變量與離散變量的協調方法(一)變電站內協調電壓控制 [期刊論文] -電力系統自動化2008(08)
5. 郭慶來.孫宏斌.張伯明.吳文傳.王彬.李柱華.湯磊 自動電壓控制中連續變量與離散變量的協調方法(二)廠站協調控制 [期刊論文] -電力系統自動化2008(09)
6. 孫鳴.吳兆文.李家仁 電廠側AVC子站系統控制策略的研究 [期刊論文] -儀器儀表用戶2008(03)
7. 楊銀國.崔麗華.李揚絮.李力.向麗玲.楊雄平 廣東電網2007春節電壓調控存在問題與對策 [期刊論文] -廣東電力2008(04)
8. 郭慶來.張伯明.孫宏斌.吳文傳 電網無功電壓控制模式的演化分析 [期刊論文] -清華大學學報(自然科學版)2008(01)
9.
Sancha J L.Fernandez J L Secondary Voltage Control:Analysis Solutions and Simulation Results for the Spanish Transmission System 1996(2)
10.
Vu H.Pruvot P.Launay C An Improved Voltage Control on Large-scale Power System 1996(3)
11.
Lefebvre H.Fragnier D.Boussion J Y Secondary Coordinated Voltage Control System: Feedback of EDF 2000
12.
Sancha J L.Fernandez J L Secondary Voltage Control:Analysis Solutions and Simulation Results for the Spanish Transmission System 1996(2)
被加州大學洛杉磯分校研究小組稱為磁電隨機存儲器的這款內存極有可能成為未來幾乎所有電子產品的內存條,包括智能手機、平板電腦、計算機、微處理器,也可專門用于數據存儲,如計算機和大型數據中心的固態磁盤等。
磁電隨機存儲器優于現有技術的主要優點是它耗能極低,同時密度大、讀取和寫入速度快、不揮發,不用加電也可保存數據(這類似于硬盤驅動器和閃存條,但速度要快得多)。
當前,磁性內存的技術基礎是自旋轉移矩,利用了電子(自旋體)的電荷和磁特性,以電流移動電子,向內存寫入數據。盡管自旋轉移矩與其他內存技術相比有諸多優勢,但其電流寫入機制仍須消耗一定能量,即寫入數據時會產生一定熱量。其存儲能力受到數據物理距離的限制,即寫入信息所需電流的限制。這種低位能力拉高了比特成本,從而限制了自旋轉移矩技術的應用。
在磁電隨機存儲器中,加州大學洛杉磯分校的研究小組用電壓取代電流來寫入數據。這樣就無須用導線移動大量的電子,而只須利用電壓(電勢差)即可開關磁位,向內存寫入信息。這樣計算機內存產生的熱量就大為減少,節能效率提高10到1000倍。此外,內存密度可提高5倍,在同樣的物理空間內能存儲更多的位信息,從而降低了比特成本。
該研究負責人為加州大學洛杉磯分校電氣工程系教授王康,成員還有論文第一作者、電氣工程研究生胡安· G·阿爾扎泰以及加州大學洛杉磯分校—國防高級研究計劃署非揮發邏輯項目經理、電氣工程助理研究員佩德拉姆·哈利利。
哈利利說:“以電壓控制納米級磁體的能力是磁學研究中令人興奮、快速增長的領域。這一工作為下列研究提供了新思考:如何以電壓脈沖控制開關方向,如何不用外部磁場就能確保設備正常工作,如何把它們整合成高密度存儲器陣列等。一旦做成商品,磁電隨機存儲器相對現行其他技術的優勢不僅表現在能量散失少上,還表現在能使磁阻隨機存儲器極為密實,這也很重要。由于成本低、性能高,磁電隨機存儲器可以挺進以前為成本和性能所困的新的應用領域。”
阿爾扎泰說:“最近首款自旋轉移矩—磁阻隨機存儲器(STT-RAM)商用芯片問世,它也為磁電隨機存儲器的推廣打開了大門,因為它們的設備原料和制造工藝十分相似,后者既可兼容STT-RAM當前的邏輯電流技術,又減緩了能量和密度的限制。”
名為《納米級磁穿隧接面的電壓開關控制》論文介紹了上述研究成果,在12月12日于舊金山召開的美國電氣和電子工程師協會國際電子設備2012年會上進行了宣讀,該年會是“半導體和電子設備領域突破性成果的杰出論壇”。
磁電隨機存儲器采用了稱為受電壓控制的磁絕緣體結點的納米級結構,數層摞在一起,其中有兩層是磁性材料,一層磁場方向固定,另一層可通過電場加以控制。特殊設計的設備對電場很敏感。當施加電場時,兩個磁層間就產生了電位差,即電壓。電壓可通過在各層表面聚積或消除電子,向內存寫入信息。
王康指出:“像這樣能量極低的自旋電子設備,其潛在應用不只限于存儲器產業。這些存儲器可集合邏輯和計算,從而徹底消除預備電力,使即通型電子系統成為現實,極大提高設備功能。”
關鍵詞:三維電極,中試裝置,PCB含銅廢水,電費
隨著電子通訊行業的迅猛發展,我國已成為名副其實的PCB生產大國,PCB產量多年居世界第一位。PCB生產廢水中污染物主要是COD與重金屬銅[1]。產生銅廢水的工序主要有:沉銅、全板電鍍銅、圖形電鍍銅、蝕刻以及各種印制板前處理工序。其中含銅非絡合物廢水主要來源為磨板、全板電鍍、圖形電鍍、酸性蝕刻以及其他一些漂洗工序[2]。本試驗主要采用陰極填充粒子的三維電極電解法處理各環節排放的非絡合綜合含銅廢水,并進行電費成本的估算。
1 試驗
1.1 試驗裝置
三維電極中試設備如圖1所示,采用PVC塑料制作(70cm50cm60cm),處理水量140L,陽極為兩塊35 cm 45 cm的涂鈦極板,陰極為2塊20cm 53 cm的銅板環境保護論文,放置在寬6cm的玻璃槽中,槽中填充廢鐵屑或活性炭粒子。
圖1 三維電極電解中試裝置圖
Fig.1 Schematic diagram of three-dimensional electrode pilot reactor
1.2 試驗方法
試驗設備為HY1711-5S雙路可跟蹤直流穩壓電源、721可見分光光度計。銅離子檢測采用2,9-二甲基-1,10-菲啰啉分光光度法中國期刊全文數據庫。
銅離子流經粒子顆粒陰極,并在其表面還原吸附析出。試驗用水取自線路板生產企業實際含非絡合銅廢水。粒子電極中的活性炭是不飽和的,故在試驗前先用試驗原水對其浸泡,并多次換水,測定浸泡前、后水中的銅離子,直至兩者相同。試驗考查極間距、電解電壓、電解時間和不同填充粒子對銅去除率的影響,得出最佳運行參數,估算電費成本。
2 試驗結果
2.1 極間距對銅離子去除的影響
為能更好的溶出廢水中的銅,調節廢水的pH值為3-4,試驗中陰極添加了鐵屑,考查當電解電壓為13V和16V時,極間距分別為4cm和6cm條件下的銅去除,結果如圖2。
Fig2.Effect of electrode distance on Cu removal
由圖2可知,不同電壓下銅去除率都隨極間距的減小而增加,這是因為極間距影響著溶液的傳質距離和電極電勢[3]。極間距小相應的可減小對流、擴散傳質的傳質距離,增大傳質的濃度梯度環境保護論文,強化傳質效果,降低電解電壓,提高電解速率和效率。但間距過小會影響操作的穩定性,因此試驗中采用極間距4cm。當電壓為16v時,電解215min銅去除率為49.6%,此時電流為5.80A,以河北省工業用電0.71元/度計,電費成本為1.68元。
2.2 電解電壓、填充顆粒和電解時間對銅離子去除的影響
為使填充顆粒呈現復極化,電解電壓必須足夠高。當施加在粒子電極上的電壓低于反應電壓時,只有短路電流或旁路電流存在。大于反應電壓時,則有反應電流出現。電壓越高,復極化程度越大,處理效果越好,但耗電量越大,并且填充顆粒上副反應加劇,產生大量氣泡環境保護論文,使得污染物在粒子上不能很好地吸附。試驗考查了極間距4cm,陰極槽填充鐵屑和活性碳兩種粒子電極形式下的銅去除率,結果見圖3和圖4。
Fig3.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling scrap iron
Fig4.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling activated carbon
試驗表明陰極槽填充鐵屑,當電壓大于16v,電解220min以上時,銅去除率可達到50%,電壓22v時電解135min,銅去除率為56.4%。而陰極槽填充活性炭時,電壓在20v以下,銅去除率仍然極低,當大于22v后銅離子可去除50%以上中國期刊全文數據庫。
圖中還可看出陰極填充鐵屑對銅的去除要好于填充活性炭顆粒,所需電壓小,電解時間短,但通過電費估算可知陰極填充鐵屑時電解電費成本較高。電壓為22V,電解135分鐘,銅去除率達到56.4%環境保護論文,進水銅濃度為58.0mg/L時,出水銅為25.3mg/L,電費成本1.72元/噸。陰極槽填充活性炭顆粒時,電壓為22v,電解90min,銅去除率為52.1%,進水銅濃度為171.3mg/L時,出水銅為82.0mg/L,電費成本1.12元/噸。
由圖4還可知,,隨著電解時間的延長,對銅離子的去除率逐漸增大,在前135 min內銅去除率隨時間的延長而迅速增大,之后增速逐漸減慢并趨于穩定。其原因是電解初期,裝置內銅離子濃度高,能快速擴散到電極表面。之后裝置銅濃度下降,濃度梯度對去除效果的影響變得顯著,所以降解曲線變得越平緩。考慮到運行費用環境保護論文,電壓為22v,電解時間宜取90 min。
3 結論
中試試驗表明三維電極電解處理PCB非絡合銅廢水最佳處理條件時陰極槽添加活性炭粒子,極間距4cm,電壓22V,電解90分鐘,在此條件下銅去除率為52.1%,進水銅濃度為171.3mg/L時,出水銅為82.0mg/L,電費成本約為1.12元/噸。三維電極電解處理此種廢水雖能回收銅,但出水達不到排放標準,需采用其他方法繼續處理。
參考文獻:
[1]謝東方.印制電路板廢水處理技術應用實踐[J].安全與環境工程,2005,12(1):42-45
[2]劉暉.印制電路板廢水處理設計[J].科技資訊,2007,9:198-199
[3]薛松宇.三維電極反應器處理染料廢水的研究:[碩士論文].天津:天津大學,2005
【關鍵詞】低壓配電 配電線路 導線截面 節能 降損
中圖分類號:TE08 文獻標識碼:A 文章編號:
一.前言
我們知道,電力網在輸送電能的過程中,電能損耗是十分驚人的,在這巨大的電能損耗中低壓(380V/220V)配電網占有相當大的比重。主要原因是低壓配電網電壓低、電流大,特別是負荷功率因數低,更加大了電能損失。若能有效降低低壓配電網的線路損耗,對于提高整個電網的經濟運行將具有重大意義。在進行輸電線路設計時,選擇導線截面的傳統方法是:按導線機械強度、允許電壓降和導線長期允許安全載流量等因素而定。但從節約能源的原則出發,應將“電能損耗大小”作為配電線路選擇導線截面的依據之一。即在經濟合理的原則下,適當增大導線截面積以減少輸電線路電能損耗,從而達到在不增加發電能力的情況下而增加供電能力的目的。
二.低壓配電線路導線截面選擇
工程設計時,離不開電氣設計,而電氣設計直接關系到人民的生命財產安全、環境保護和其他公眾利益,成功的導線截面設計,應當是安全、合理、經濟和可行的。而導線截面設計則是電氣工程設計的重要組成部分之一。由國家建設部頒發的《工程建設標準強制性條文》對電氣方面要求就更加嚴格。因此,我們在低壓配電線路導線截面設計中,不僅要使導線截面有足夠的安全儲備,而且要限制導線截面過大造成的經濟浪費,來保證電氣設備的安全運行。低壓線路導線導線截面設計,一般應根據以下幾方面的要求來選擇:
1.選擇導線截面,首先滿足發熱條件這一要求,即導線通過的電流,不得超過其允許的最大安全電流。通常,當負荷電流通過導線時,由于導線具有電阻,導線發熱,溫度升高。當裸導線的發熱溫度過高時,導線接頭處的氧化加劇,接觸電阻增大;如果發熱溫度進一步升高,可能發生斷線事故。當絕緣導線( 包括電纜) 的溫度過高時,絕緣老化和損壞,甚至引起火災。因此,導線應能夠承受長期負荷電流所引起溫升。各類導線都規定了長期允許溫度和短時最高溫度,從而決定了導線允許長期通過的電流和短路時的熱穩定電流。選擇導線截面時,應考慮計算的負荷電流不超過導線的長期載流量,導線的額定電流可以從工具書中查到。
2.為保證導線具有必要的機械強度,要求導線的截面不得太小。因為導線截面越小,其機械強度越低。低壓線路的導線要經受拉力,電纜要經受拖曳。所以,規程對不同等級的線路和不同材料的導線,分別規定了最小允許截面。按機械強度選擇導線的允許最小截面,可參考表一。
3.選擇導線截面,還應考慮線路上的電壓降和電能損耗。電壓損失導線的電壓降必須限制在一定范圍以內。按規定,電力線路在正常情況下的電壓波動不得超過正負百分之五臨時供電線路可降低到百分之八。當線路有分支負荷時,如果給出負截的電功率P和送電距離L,允許的電壓損失為ε,則配電導線的截面( 線路功率因數改為I) 可按下式計算
式中P為負載電功率,千瓦;
L為送電線路的距離,米;
ε為允許的相對電壓損失,=;
C為系數,視導線材料,送電電壓而定( 表二)
Kn為需要系數,視負載用電情況而定,其值可從一般電工手冊和參考書中查到。
表二公式中的系數C值
例:距配電變壓器400米處有1臺電動機,功率為10千瓦,采用380伏三相四線制線路供電,電動機效率為η=0.80,COSΨ=0.85,Kn=1,要求, ε=5%應選擇多少截面的銅導線?
解(1) 按導線的機械強度考慮,導線架空敷設銅絕緣導線的截面不得小于4平方毫米
(2 ) 按允許電流考慮,求出電動機工作電流( 計算電流)
從電工手冊查得S=2.5平方毫米的橡皮絕緣銅線明敷時的允許電流為28 安培,可滿足要求Ij=Ie
(3 ) 按允許電壓降考慮,首先計算電動機自電源取得電功率
若選用銅線則C=77,Kn=1,求出導線截面為
為滿足以上三個條件,可選用S=16平方毫米的BX型橡皮絕緣銅線
選擇導線截面,一般來說,應考慮以上三個因素。但在具體情況下,往往有所側重,針對哪一因素是主要的,起決定作用的,就側重考慮該因素。根據實踐經驗,低壓動力線路的負荷電流較大,一般先按發熱條件選擇導線截面,然后驗算其機械強度和電壓降。低壓照明線路對電壓的要求較高,所以先按允許電壓降來選擇導線截面,然后驗算其發熱條件和機械強度。在三相四線制供電系統中,零線的允許截流量不應小于線路中的最大單相負荷和三相最大不平衡電流,并且還應滿足接零保護的要求。在單相線路中,由于零線和相線都通過相同的電流,因此,零線截面應與相線截面相同。例如,對于長距離輸電線路,主要考慮電壓降,導線截面根據限定的電壓降來確定;對于較短的配電線路,可不計算線路壓降,主要考慮允許電流來選擇導線截面;對于負荷較小的架空線路,一般只根據機械強度來確定導線截面。這樣,選擇導線截面的工作就可大大簡化
三.結束語
雖然我國低壓供配電系統設計中依然存在著一些問題和缺陷,但是,隨著我國經濟實力和科學技術實力的進一步增強,將會為我國的低壓配電節能的發展奠定更為堅實的發展基礎,為了保證用戶電器的正常運轉,提高我國低壓配電節能能力,可以實施獨立的供配電系統,同時,要進一步完善各種應急措施,比如設置應急的電源,如此,可以在發生一些突發事件時候,保證企業的供配電能夠正常進行,對企業的財產形成更強有力的保證。在進行企業的供配電設計時候,要充分考慮到企業建筑供電要求高,供電負荷復雜的特點,要在綜合考慮整個企業生產設備和功能的基礎上,采取有效的設計工藝,嚴格設計流程,在企業相關各個部門共同的配合下,加強雙方的溝通,保證供配電設計能夠充分滿足企業各方面的需求,同時,要在實踐中,不斷促進整個企業供配電系統的優化。
參考文獻:
[1]劉平甘 陳洪波 劉凡紫外檢測技術在電力系統中的應用及其展望 [會議論文],2009 - 中國電機工程學會高電壓專業委員會2009年學術年會
[2]吳栩 馮鵬英 高壓電氣設備的在線檢測技術 [期刊論文] 《中國房地產業》 -2011年8期
[3]張川 劉乃濤 賀福敏 李林 李成龍 高壓電力設備的在線絕緣檢測技術 [會議論文],2011 - 中國石油和化工自動化第十屆年會
[4]曾曉暉 聶端 基于絕緣在線檢測技術的狀態維修 [期刊論文] 《中國農村水電及電氣化》 -2005年9期
[5]陳偉球 趙吳鵬 尹忠東 周浩 張瑜 在線檢測技術可行性分析 低壓配電網無功負序不平衡現象的節能降損解決方案 [期刊論文] 《電網與清潔能源》 -2009年7期
[6]文江林基于光纖熒光的電力設備溫度檢測系統的研究 [學位論文], 2005 - 沈陽工業大學:檢測技術及自動化裝置
關鍵詞:變壓器,過電壓,保護措施
變壓器運行時,如果電壓超過它的最大允許工作電壓,稱為變壓器的過電壓。過電壓往往對變壓器的絕緣有很大的危害,甚至使絕緣擊穿。過電壓分為內部過電壓和大氣過電壓兩種。輸電線路直接遭雷擊或雷云放電時,電磁場的劇烈變化所引起的過電壓稱為大氣過電壓(外部過電壓);當變壓器或線路上的開關合閘或拉閘時,因系統中電磁能量振蕩和積聚而產生的過電壓稱為內部過電壓。變壓器的這兩種過電壓都是作用時間短促的瞬變過程。科技論文。內部過電壓一般為額定電壓的3.0-4.5倍,而大氣過電壓數值很高,可達額定電壓的8-12倍,并且繞組中電壓分布極不均勻,端頭部分線匝受到的電壓很高。因此,必須采取必要的措施,防止過電壓的發生和進行有效的保護。
過電壓在變壓器中破壞絕緣有兩種情況,一是將繞組與鐵心(或油箱)之間的絕緣高壓繞組與低壓繞組之間的絕緣(這些絕緣稱為主絕緣)擊穿;另一種是在同一繞組內將匝與匝之間或一段繞組與另一段繞之間的絕緣(這些絕緣稱為縱絕緣)擊穿。由于過電壓時間極短,電壓從零上升到最大值再下降到零均在極短的時間內完成,因而具有高頻振蕩的特性,其頻率可達100kHZ以上。在正常運行時,電網的頻率是50HZ,變壓器的容抗很大,而感擴ωL很小,因此可以忽略電容的影響,認為電流完全從繞組內部流過。但對高頻過電壓波來說,變壓器的容抗變成很小,而感抗變成很大,此時電流主要由電容流過,所以必須考慮電容的影響。科技論文。考慮電容影響后,變壓器的分布參數電路(見后面圖1)。
其中:CFe——繞組每單位長度上的對地電容;C’——高低壓繞組之間每單位長度上的電容;Ct——繞組每單位長度上的匝間電容;L’——過電壓時繞組每單位長度上的漏電感;R’——繞組每單位長度上的電阻。
下面簡單說明兩種不同類型過電壓產生的原因:
1.內部過電壓我市電網中,絕大多數是降壓變壓器,下面就以降壓變壓器空載拉閘為例說明內部電壓產生的原因
根據變壓器參數的折算法可知,把二次側(低壓側)電容折算到一次側(高壓側)時,電容折算值為實際值的(1/K2)倍,所以二次側電容的影響可以略去不計。這就是說,空載時可以忽略二次側的影響。就一次繞組來說,由于每單位長度上的對地電容CFe是并聯的,故對地總電容為CFe=ΣCFe由于一次側單位長度上的匝間電容Ct是串聯的,故它的匝間總電容為Ct=1/(Σ1/Ct)在電力變壓器中,通常CFe>>Ct,所以定性分析時,匝間電容的影響也可略去不計。當再忽略繞組電阻R1時,可得空載拉閘過電壓時的簡化等效電路(見后面圖2):其中L1是一次繞組的全自感。把空載變壓器從電網上拉閘時,如果空載電流的瞬時值不等于零而是某一數值Ia,這時相應的外施電壓瞬時值為Ua。于是在拉閘瞬間,電感L1中儲藏的磁場能量為1/2L1i2a,電容CFe上儲藏的電場能量為1/2CFeU2a。由于這時變壓器的電路是由電感L1和電容CFe并聯的電路,故在拉閘瞬間,回路內將發生電磁振蕩過程。在振蕩過程中,當某一瞬間電流等于零時,此時磁場能量全部轉化為電場能量,由電容吸收,電容上的電壓便升高到最大值Ucmax。當不考慮能量損失時,根據能量守恒原理有CFeU2cmax= L1i2a+CFeU2a故得上式表明,當拉閘電流和電容上的電壓一定時,繞組的電感愈大,對地電容愈小,則拉閘時過電壓愈高。電力系統中,拉閘過電壓通常不超過額定電壓的3.0-4.5倍。
2.大氣過電壓大氣過電壓是輸電線路直接遭受雷擊或雷云放電時,電磁場的劇烈變化所引起的
當輸電線路直接遭受雷擊時,雷云所帶的大量電荷(設為正電荷)通過放電渠道落到輸電線上,大量的自由電荷向輸電線路的兩端傳播,就在輸電線上引起沖擊過電壓波,稱為雷電波。雷電波向輸電線兩端傳播的速度接近于光速,持續的時間只有幾十微秒,電壓由零上升到最大值的時間只有幾微秒。雷電波的典型波形為曲線由零上升到最大值這一段稱為波頭,下降部分稱為波尾。如果把波頭所占時間看成是周期波的四分之一周期,則雷電波可看成是頻率極高的周期性波。這樣,當過電壓波到達變壓器出線端時,相當于給變壓器加上了一個頻率極高的高電壓。這一瞬變過程很快,一開始,由于高頻下,ωL很大的,1/ωC很小,電流只從高壓繞組的匝電容和對地電容中流過。由于低壓繞組靠近鐵心,它的對地電容很大,(即容抗很小),可近似地認為低壓繞組接地。科技論文。可雷電波襲擊時,沿繞組高度上的電壓分布取決于匝間電容Ct和對電容CFe的比例。在一般情況下,由于兩種電容都存在,過電壓時,一部分電流由對地電容分流,故每個匝間電容流的電流不相等,上面的匝間電容流過的電流最大愈往下面則愈小,隨著電壓沿繞組高度的分布變為不均勻,見下圖:(圖3是過電壓波加在變壓器兩端的電壓)從圖中可見,起始電壓分布很不均勻,靠近輸電線A端的頭幾匝間出現很大的電壓梯度,因此,在頭幾個線匝里,匝間絕緣和線餅之間的絕緣都受到很大的威脅,這時最高匝間電壓可能高達額定電壓的50-200倍。
3.過電壓保護為了防止變壓器繞組絕緣在過電壓時被擊穿,必須采取適當的過電壓保護措施,目前主要采用下列措施
3.1避雷器保護
在變壓器的出線端裝設避雷器,當雷電波從輸電線侵入時,避雷器的保護間隙被擊穿,過電壓波對地放電,這樣雷電波就不會侵入變壓器,從而保護了變壓器。
3.2加強絕緣
除了加強變壓器高壓繞組對地絕緣外,針對雷電波作用的特性,還要加強首端及末端部分線匝的絕緣,以承受由于起始電壓分布不均勻而出現的較高的匝間電壓。這種方法效果有限,而且加厚絕緣使散熱困難,同時減少了匝間電容,增大了匝間電壓梯度。目前只在35kV及以下的變壓器中采用。
3.3增大匝間電容
匝間電容相對于對地電容愈大時,則電壓的起始分布愈均勻,電壓梯度越小,因此增加匝間電容是有效的過電壓保護措施。過去常采用加裝靜電板或靜電屏的方法,現在在110kV以上的高壓變壓器上,廣泛采用糾結式線圈。糾結式線圈制造工藝簡單,不增加材料,與連續式線圈相比能顯著增大匝間電容,所以現在高壓大型電力變壓器的高壓繞組大多數采用了這種繞線法。結束語造成變壓器過電壓的原因多種多樣,針對不同的過電壓,有不同的過電壓保護措施。在實際工作中,我們應進行經濟上和技術上的全面研究,選擇有效的過電壓保護措施,確保變壓器的安全穩定運行。
關鍵詞:低功耗;無線供能;電荷泵整流器;低壓差線性穩壓器;帶隙基準電壓源;電源抑制
中圖分類號:TM44;TN722;TP393 文獻標識碼:A 文章編號:2095-1302(2016)12-00-04
0 引 言
近幾年,受益于集成電路工藝技術與片上系統(System on Chip,SOC)的不斷發展,射頻識別、微傳感網絡以及環境感知等智能技術得到了飛速發展。其中,對于無線供能植入式芯片的能量管理、功耗等問題受到了持續關注與研究。當能量采集完成后,如何管理該能量是下一代被動與半被動植入式醫療設備的要點之一。
在低功耗植入式芯片中,如低噪聲放大器、模數轉換器等對工作電壓及其紋波都有一定的要求,因此須通過無線能量管理單元(Wireless Power Management Unit,WPMU)將其電源性能優化。在被動式芯片中,電荷泵整流器(Charge Pump Rectifier,CPR)、帶隙基準源(Bandgap Reference,BGR)、低壓差線性穩壓器(Low Dropout Regulator,LDO)是WPMU的重要組成單元[1]。芯片工作時,人體各種低頻信號(EEG、ECG)會通過相應的耦合方式傳輸到電源通路上,從而產生低頻噪聲,因此必須采用相關技術獲得高電源抑制比電源。論文首先通過電荷守恒定理對傳統Dickson電路進行動態分析及能量轉換效率的改進;然后采用電源抑制增強(Power Supply Rejection Boosting,PSRB)與前饋消除(Feed-forword Cancellation,FWC)等技術分別提高BGR、LDO在運放工作帶寬內的電源抑制力(Power Supply Rejection,PSR),并在輸出節點并聯電容以濾除超高頻紋波;最后為保證LDO在負載變化時的穩定性,利用零極點追蹤補償來滿足相位裕度的要求。
論文對高性能無線能量管理單元預設指標為:
(1)CPR在輸入500 mV交流小信號時能輸出2 V電壓并驅動200 A的電流。
(2)BGR輸出電源抑制比在LDO的工作范圍內盡可能大于60 dB,以減小對LDO的影響。
(3)LDO輸出電源抑制比在生物信號頻率處(01 kHz)及CPR輸入信號處大于60 dB,從而提供負載電路高性能的工作電壓。
(4)在滿足以上性能的情況下,盡可能減小電路工作時的靜態電流。
1 無線能量管理單元的基本原理
圖1所示為論文采用的無線供能能量管理單元拓撲結構。由圖1可知,WPMU主要包含CPR、BGR、LDO及保護電路(PRO)等模塊。芯片通過片外天線采集到由基站發射的高頻無線能量信號,CPR將信號整流后進行升壓,產生紋波較大的電壓,并將該能量儲存到Cs中。由BGR與LDO所組成的環路通過負反饋輸出紋波較小的VDD來驅動負載電路。其中BGR為LDO提供一個精準穩定的參考電壓,因此BGR的性能影響著LDO輸出電壓的性能。芯片中的保護電路包括過溫保護電路、過壓保護電路、限流電路,其主要目的在于意外情況下對電路關斷,實現對電路的保護。
設計能量管理單元時,在無線供能的環境下要注意相關性能的優化,而這又伴隨著其它性能的犧牲,下面將詳細分析論文采用的CPR、BGR、LDO設計原理及電路結構。
3 版圖及后仿真結果
采用SMIC 0.18 m CMOS工藝,在Cadence下對電路進行仿真驗證,無線能量管理單元的版圖如圖7所示,其中包含了CPR、BGR、LDO及PRO等模塊,芯片的尺寸大小為277 m×656 m。
電路在工作時要避免反饋環路發生震蕩,必須保證LDO環路的相位裕度,論文在tt、ff、ss三個工藝角下對其進行不同負載電流(0200 A)的仿真,仿真結果如表1所列。該結果表明在負載電流0200 A內,由于零極點追蹤補償的作用,相位裕度均大于60度,根據奈奎斯特穩定判據,LDO環路能在負載變化的范圍內穩定工作。
圖8所示為BGR、LDO的PSR仿真波形,從圖中可以看出,BGR采用PSRB技術后,PSR在低頻降低了近25 dB。當LDO采用FWC技術時,電源抑制在低頻段得到了顯著提升,電路空載時,在100 Hz內提升了近20 dB,滿載時提升了近40 dB。
圖912給出了WPMU中CPR與LDO的相關瞬態仿真結果,當輸入頻率為500 MHz、幅度為0.5 V的正弦波時,電路建立時間約為13 s,CPR的紋波約為5 mV,而LDO的輸出電壓紋波減小至2.3 V,即高頻處PSR約為-66 dB。因此論文采用的LDO在生物信號頻率處(DC-10 kHz)與輸入信號頻率處(100 MHz以上)具有較好的PSR。表2對相關文獻與本文設計進行性能比較,可以看出,該電源管理單元能輸出性能更好的工作電壓。
4 結 語
論文針對CPR、LDO、BGR進行研究,設計了一種應用于低功耗無線供能植入式醫療芯片的能量管理單元。采用SMIC 0.18 m CMOS工藝提供的本征MOS管使CPR的效率得到提升。利用PSRB將BGR的PSR在低頻處從-75 dB降低到-95 dB,這是優化LDO電源抑制能力的基本前提。通過FWC、零極點追蹤補償改善LDO的PSR與穩定度,在驅動0.2 mA的負載電流時,PSR為-85 dB@DC,而相位裕度在負載范圍內均大于60度,該性能可適用于對電源性能要求較高的模塊。
參考文獻
[1]郭文雄.應用于植入式經皮能量傳輸的集成電路研究與設計[D].廣州:華南理工大學,2013.
[2]Pierre Favrat, Philippe Deval, Michel J.Declercq. A High-Efficiency CMOS Voltage Doubler[J]. IEEE Journal of Solid-State Circuits, 1998, 33(3) : 410-416.
[3]To shiyuki Umeda, Hiroshi Yoshida, Shuichi Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance[J]. IEEE Journal of Solid-State Circuits, 2006, 41(1): 35-41.
[4]Keith Sanborn, Dongsheng Ma, Vadim Ivanor. A Sub-1-V Low-Noise Bandgap Voltage Referen-ce[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11) : 2466-2481.
[5]Mohamed El-Nozahi, Ahmed Amer, Joselyn Torres, et al. High PSR LOW Drop-Out Regulator With Feed-Forward Ripple Cancellation Techniq-ue[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3) : 565-577.
[6]王憶.高性能低壓差線性穩壓器研究與設計[D].杭州:浙江大學,2010.